Yarom, Yuval "Make Sure DSA Signing Exponentiations Really Are Constant-Time"

Total Page:16

File Type:pdf, Size:1020Kb

Yarom, Yuval This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. García, Cesar Pereida; Brumley, Billy Bob; Yarom, Yuval "Make sure DSA signing exponentiations really are constant-time" Published in: CCS 2016 - Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security DOI: 10.1145/2976749.2978420 Published: 24/10/2016 Document Version Publisher's PDF, also known as Version of record Published under the following license: CC BY-NC-SA Please cite the original version: García, C. P., Brumley, B. B., & Yarom, Y. (2016). "Make sure DSA signing exponentiations really are constant- time". In CCS 2016 - Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Vol. 24-28-October-2016, pp. 1639-1650). ACM. https://doi.org/10.1145/2976749.2978420 This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. Powered by TCPDF (www.tcpdf.org) “Make Sure DSA Signing Exponentiations Really are Constant-Time” Cesar Pereida García Billy Bob Brumley Yuval Yarom Department of Computer Department of Pervasive The University of Adelaide and Science Computing Data61, CSIRO, Australia Aalto University, Finland Tampere University of [email protected] cesar.pereida@aalto.fi Technology, Finland billy.brumley@tut.fi ABSTRACT Our attack builds upon several techniques to profile the TLS and SSH are two of the most commonly used proto- cache memory and capture timing signals. The signals are cols for securing Internet traffic. Many of the implemen- processed and converted into a sequence of square and mul- tations of these protocols rely on the cryptographic primi- tiplication (SM) operations from which we extract informa- tives provided in the OpenSSL library. In this work we dis- tion to create a lattice problem. The solution to the lattice close a vulnerability in OpenSSL, affecting all versions and problem yields the secret key of digital signatures. forks (e.g. LibreSSL and BoringSSL) since roughly October Flush+Reload [40] is a powerful technique to perform 2005, which renders the implementation of the DSA signa- cache-timing attacks. We adapt the Flush+Reload tech- ture scheme vulnerable to cache-based side-channel attacks. nique to OpenSSL's implementation of DSA and, exploit- Exploiting the software defect, we demonstrate the first pub- ing properties of the Intel implementation of the x86 and lished cache-based key-recovery attack on these protocols: x64 processor architectures, our spy program probes rele- 260 SSH-2 handshakes to extract a 1024/160-bit DSA host vant memory addresses to create a signal trace. key from an OpenSSH server, and 580 TLS 1.2 handshakes We process the captured signal to get the SM sequence to extract a 2048/256-bit DSA key from an stunnel server. performed by the sliding window exponentiation (SWE) al- gorithm. Then we observe and analyze the number of bits that can be extracted and used from each of those sequences. Keywords Later, the variable amount of bits extracted from each trace applied cryptography; digital signatures; side-channel anal- is used as input to a lattice attack that recovers the private ysis; timing attacks; cache-timing attacks; DSA; OpenSSL; key. CVE-2016-2178 To bridge the gap between the limited resolution of the Flush+Reload technique [4] and the high-performance of 1. INTRODUCTION the OpenSSL code we apply the performance-degradation One of the contributing factors to the explosion of the technique of Allan et al. [4]. This technique slows the expo- Internet in the last decade is the security provided by the nentiation by an average factor of 20, giving a high resolution underlying cryptographic protocols. Two of those protocols trace and allowing us to extract up to 8 bits of information are the Transport Layer Security (TLS) protocol, which pro- from some of the traces. vides security to network communication and the more spe- Similar to previous works [9, 14, 21, 32], we perform a cialized Secure Shell (SSH), which provides secure login to lattice attack to recover the secret key. We use the lattice remote hosts. construction of Benger et al. [9] and solve the resulting lat- Software implementations of these protocols often use the tice problem using the lattice reduction technique of Nguyen cryptographic primitives' implementations of the OpenSSL and Shparlinski [28]. cryptographic library. Consequently, the security of these A unique feature of our work is that we target common implementations depends on the security of OpenSSL. cryptographic protocols. Previous works that demonstrate In this paper we present a novel side-channel cache-timing cache-timing key-recovery attacks only target the crypto- attack against OpenSSL's DSA implementation. The attack graphic primitives, ignoring potential cache noise from the exploits a vulnerability in OpenSSL, which fails to use a side- protocol implementation. In contrast, we present end-to- channel-secure implementation of modular exponentiation end attacks on two common cryptographic protocols: SSH | the core mathematical operation used in DSA signatures. and TLS. We are, therefore, the first to demonstrate that cache-timing attacks are a threat not only when executing Permission to make digital or hard copies of part or all of this work for personal or the cryptographic primitives but also in the presence of the classroom use is granted without fee provided that copies are not made or distributed cache activity of the whole protocol suite. for profit or commercial advantage and that copies bear this notice and the full citation Our contributions in this work are the following: on the first page. Copyrights for third-party components of this work must be honored. CCS’16 October 24-28, 2016, Vienna, Austria • We identify a security weakness in OpenSSL which c 2016 Copyright held by the owner/author(s). fails to use a side-channel safe implementation when ACM ISBN 978-1-4503-4139-4/16/10. performing DSA signatures. (Section 3) DOI: http://dx.doi.org/10.1145/2976749.2978420 • We describe how to use a combination of the Flush+ 1639 Reload technique with a performance-degradation at- cache levels above them. In the case of Intel processors, tack to leak information from the unsafe SWE algo- the contents of the L1 and L2 caches is also stored in the rithm. (Section 4) last-level cache. A consequence of the inclusion property is that when data is evicted from the last-level cache it is also • We present the first key-recovery cache-timing attack evicted from all of the other levels of cache in the processor. on the TLS and SSH cryptographic protocols. (Sec- Intel architecture implements several cache optimizations. tion 5) The spatial pre-fetcher pairs cache lines and attempt to fetch the pair of a missed line [17]. Consecutive accesses to mem- • We construct and solve a lattice problem with the side- ory addresses are detected and pre-fetched when the pro- channel information and the digital signatures in order cessor anticipates they may be required [17]. Additionally, to recover the secret key. (Section 6) when the processor is presented with a conditional branch, speculative execution brings the data of both branches into 2. BACKGROUND the cache before the branch condition is evaluated [35]. Page [30] noted that tracing the sequence of cache hits 2.1 Memory Hierarchy and misses of software may leak information on the internal working of the software, including information that may lead Accessing data and instructions from main memory is a to recovering cryptographic keys. time consuming operation which delays the work of the fast This idea was later extended and used for mounting sev- processors, for that reason the memory hierarchy includes eral cache-based side-channel attacks [10, 29, 31]. Other smaller and faster memories called caches. Caches improve attacks were shown against the L1-instruction cache [3], the the performance by exploiting the spatial and temporal lo- branch prediction buffer [1, 2] and the last-level cache [20, cality of the memory access. 22, 25, 40]. In modern processors the hierarchy of caches is structured as follows, higher-level caches, located closer to the processor 2.2 The Flush+Reload Attack core, are smaller and faster than low-level caches, which are Our LLC-based attack is based on the [20, located closer to main memory. Recent Intel architecture Flush+Reload 40] attack, which is a cache-based side-channel attack tech- typically has three levels of cache: L1, L2 and Last-Level nique. Cache (LLC). Unlike the earlier technique [29, 31] that Each core has two L1 caches, a data cache and an instruc- Prime+Probe detects activity in cache sets, the technique tion cache, each 32 KiB in size with an access time of 4 Flush+Reload identifies access to memory lines, giving it a higher resolu- cycles. L2 caches are also core-private and have an inter- tion, a high accuracy and high signal-to-noise ratio. mediate size (256 KiB) and latency (7 cycles). The LLC is Like , relies on cache shar- shared among all of the cores and is a unified cache, con- Prime+Probe Flush+Reload ing between processes. Additionally, it requires data shar- taining both data and instructions. Typical LLC sizes are ing, which is typically achieved through the use of shared in megabytes and access time is in the order of 40 cycles.
Recommended publications
  • EPL-0010589 Article-2
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Korhonen, O.; Forsman, N.; Österberg, M.; Budtova, T. Eco-friendly surface hydrophobization of all-cellulose composites using layer-by-layer deposition Published in: Express Polymer Letters DOI: 10.3144/expresspolymlett.2020.74 Published: 01/10/2020 Document Version Publisher's PDF, also known as Version of record Please cite the original version: Korhonen, O., Forsman, N., Österberg, M., & Budtova, T. (2020). Eco-friendly surface hydrophobization of all- cellulose composites using layer-by-layer deposition. Express Polymer Letters, 14(10), 896-907. https://doi.org/10.3144/expresspolymlett.2020.74 This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. Powered by TCPDF (www.tcpdf.org) eXPRESS Polymer Letters Vol.14, No.10 (2020) 896–907 Available online at www.expresspolymlett.com https://doi.org/10.3144/expresspolymlett.2020.74 Eco-friendly surface hydrophobization of all-cellulose composites using layer-by-layer deposition O. Korhonen1, N. Forsman1, M. Österberg1, T. Budtova1,2* 1Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, P.O. Box 16300, 00076 Aalto, Finland 2MINES ParisTech, PSL Research University, CEMEF – Center for materials forming, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France Received 14 January 2020; accepted in revised form 3 March 2020 Abstract.
    [Show full text]
  • ITG Meeting 26
    www.sail-project.eu Capacity Sharing Workshop Agenda 8:30 Registration & Coffee 8:45 Welcome 9:00 Session 1: Network Emulation & Simulation Scalability Engineering innovations applicable to mobile/cellular (ConEx), Bob Briscoe (BT) Congestion Exposure in Mobility Scenarios, Faisal Ghias Mir, Dirk Kutscher, Marcus Brunner (NEC) Enhanced Capacity Management – how to monitor, control, and steer your service quality, Dr. Wolfgang Knospe (Detecon) Bridging QoE and QoS for Mobile Broadband Networks, David Soldani (Huawei) 10:45 Coffee break 11:00 Session 2: Transport Layer QoS Considerations for controlling TCP's fairness on end hosts, Michael Welzl (Department of Informatics, University of Oslo) Trading loss against delay in Networked Control Systems, Rainer Blind (Networked Control Systems (NCS), University of Stuttgart) Fair Background Data Transfers of Minimal Delay Impact, Costas Courcoubetis, Antonis Dimakis (Athens University of Economics and Business) Multipath Transport Challenges and Solutions, Michael Scharf (Bell Labs Stuttgart) 12:45 Lunch 13:45 Session 3: QoS in Wireless Networks QoS and QoE in the Next Generation Networks: application to wireless networks, Prof. Pascal Lorenz (University of Haute Alsace) Improving the Usability of Cellular Charging Solutions, Christian Hoene (University of Tübingen) Context-Aware Resource Allocation for Media Streaming: Exploiting Mobility and Application-Layer Predictions, Hatem Abou-zeid, Stefan Valentin (Bell Labs Stuttgart) and Hossam Hassanein (Queen's University, Canada) Context-aware Scheduling
    [Show full text]
  • Wojciech Tomasz Sołowski Date of Birth
    Name: Wojciech Tomasz Sołowski Date of Birth: 25th December 1978 Mobile: +358 (0) 505925254 Email (work): [email protected] Email (private) : [email protected] Webpage (work) : https://people.aalto.fi/wojciech.solowski Webpage (private) : https://solowski.info Address (work): Civil Engineering Department, Aalto University, Rakentajanaukio 4, Espoo, Finland Education: PhD (Durham), MEng (Silesian University of Technology) Languages: English (fluent), German (Zentrale Mittelstufe Prűfung, ZMP), French (B2/B1 level), Finnish (B1/B2), basic Russian Research interests: Material point method (development, validation, use in geomechanics), constitutive modelling of soils, unsaturated soils – in particular in application for nuclear waste disposal sites, links between soil microstructure and its macroscopic behaviour, stress integration algorithms, computational algorithms, cyclic loading, soil improvement methods, soil dynamics Other Interests: computers, technology, programming, artificial intelligence, economics, badminton, tennis, bridge, tai-chi. Web : https://people.aalto.fi/en/wojciech_solowski https://solowski.info Affiliations 2017 – current Assistant Professor (2), Aalto University, Finland 2014 – 2017 Assistant Professor (1), Aalto University, Finland 2009 – 2014 Research Associate, University of Newcastle, Australia 2005 – 2008 Marie – Curie Early Stage Research Fellow, Durham University, UK. Research area: constitutive modelling of unsaturated soils, implementation of unsaturated soil models into Finite Element
    [Show full text]
  • Aalto University Is a Community of Bold Thinkers Where Science and Art Meet Technology and Business
    Assistant professor in Marketing (tenure track) Application closes on: 17.5.2021 Place: Department of Marketing Position: Tenure track Aalto University is a community of bold thinkers where science and art meet technology and business. We are committed to identifying and solving grand societal challenges and building an innovative future. Aalto has six schools with nearly 11 000 students and a staff of more than 4000, of which 400 are professors. Our main campus is located in Espoo, Finland. Diversity is part of who we are, and we actively work to ensure our community’s diversity and inclusiveness in the future as well. This is why we warmly encourage qualified candidates from all backgrounds to join our community. The Department of Marketing at Aalto University School of Business invites applications for full-time fixed-term position as Assistant professor in Marketing Your role and goals The candidate is expected to exercise and guide scientific research, to provide related higher academic education, to follow the advances of their field, to participate in service to the Aalto University community and to take part in societal interaction and international collaboration in their field. The position will be filled on the Assistant professor level (1st term 2021). The department welcomes applicants with strong methodological knowhow and background in some combination of data analytics, quantitative research methods, modelling, simulations, AI and data science broadly speaking, and expertise in applying these skills in marketing. The department also encourages excellent marketing scholars from outside these methodological fields to apply. Consistent with departmental culture and Aalto School of Business’ mission we welcome creativity as well as substantive and methodological expertise.
    [Show full text]
  • Hemeida, Ahmed
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Hemeida, Ahmed; Lehikoinen, Antti; Rasilo, Paavo; Vansompel, Hendrik; Belahcen, Anouar; Arkkio, Antero; Sergeant, Peter A Simple and Efficient Quasi-3D Magnetic Equivalent Circuit for Surface Axial Flux Permanent Magnet Synchronous Machines Published in: IEEE Transactions on Industrial Electronics DOI: 10.1109/TIE.2018.2884212 Published: 01/11/2019 Document Version Peer reviewed version Please cite the original version: Hemeida, A., Lehikoinen, A., Rasilo, P., Vansompel, H., Belahcen, A., Arkkio, A., & Sergeant, P. (2019). A Simple and Efficient Quasi-3D Magnetic Equivalent Circuit for Surface Axial Flux Permanent Magnet Synchronous Machines. IEEE Transactions on Industrial Electronics, 66(11), 8318-8333. https://doi.org/10.1109/TIE.2018.2884212 This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. Powered by TCPDF (www.tcpdf.org) © 2018 IEEE. This is the author’s version of an article that has been published by IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    [Show full text]
  • Aalto University Website Website for Incoming Exchange Students Website for International Students at Aalto
    Important links: Aalto University website Website for incoming exchange students Website for international students at Aalto Aalto University Schools of Technology Information sheet 2021-2022 Study fields Please click the School name for course lists. School of Chemical Engineering • Biomass Refining • Fibre and Polymer Engineering • Biotechnology • Chemistry • Functional Materials • Sustainable Metals Processing • Chemical and Process Engineering • Biosystems and Biomaterials School of Electrical Engineering • Automation and Systems Technology • Communications Engineering • Electronics and Electrical Engineering • Bioinformation Technology School of Engineering • Building Technology • Energy Technology • Geoengineering • Geoinformatics • Mechanical Engineering • Real Estate Economics • Spatial Planning and Transportation Engineering • Water and Environmental Engineering School of Science • Computer Science • Industrial Engineering and Management • Engineering Physics • Mathematics and Operations Research • Biomedical Engineering and Neuroscience Academic matters Courses for At least 2/3 of the courses should be selected from one school. The remaining 1/3 can exchange students be taken from other Schools of Technology in Aalto University, as long as the prereq- uisites are met. Exchange students are not allowed to take courses from the School of Arts, Design and Architecture or the School of Business, except for cross-school courses, univer- sity wide studies and interdisciplinary studies. For more information on studies, please see Into website. There are some changes in the course selection every year, the study programmes are updated during the summer. Students must be prepared to make changes in their study plans upon arrival. Regardless of study level, exchange students can choose both Bachelor and Master level courses, provided that the prerequisites are met. The majority of courses of- fered in English are on the Master level.
    [Show full text]
  • Curriculum Vitae Pia Christina Fricker
    curriculum vitae Pia Christina Fricker Full name and date Name Pia Christina Fricker Gender Female Date of writing CV 23.04.2018 Date and place of birth, nationality, current residence Date of Birth 17.06.1974 Place of Birth Karlsruhe, Germany Nationality Finnish Family Status married Current Residence Kontiontie 3 E 38 FIN 02110 Espoo [email protected] + 358 503087105 Education and degrees awarded Doctoral Studies PhD student, ETH Zurich (CH): to be finished end of 2018 Postgraduate Studies Diploma Master of Advanced Studies in Computer Aided Architectural Design (MAS.CAAD.ETHZ): 2002 - 2003, (65 ects) – parametric design in architecture, Prof. Ludger Hovestadt, Chair for Computer Aided Architectural Design, Dept. for Architecture, ETH Zurich (CH), final grade: excellent Academic Studies M.Sc. Architecture (Dipl.Ing): 2001, Technical University Karlsruhe (DE), topic: Hafencity Hamburg, supervisor Prof. Dr. Günther Uhlig, Prof. Henri Bava, specification in landscape architecture and urban design, final grade: excellent Other education and training, qualifications and skills Further Education Construction Manager: 2004, Baugewerbliche Berufsschule Zurich, (CH) International mobility 1998-1999, Department of Architecture, HUT: Technical University Helsinki, and Department of Architecture, TUT: Technical University of Tampere, (FIN) Linguistic skills Language Skills German: native speaker English: fluent, spoken and written (CEF level C2) Finnish: good command, spoken and written (CEF level B2) French: good command, spoken and written (CEF level B2) Swedish: basic communication skills (CEF level A2) Current position Current position since August 2017: Professor, Professorship for Computational Methodologies in Landscape Architecture and Urbanism, Dept. for Architecture Employeer Aalto University, School of Art, Design and Architecture 1 | CV .
    [Show full text]
  • Curriculum Vitae
    Debopam Bhattacherjee PhD Candidate, Final (5th) year Email: [email protected] Network Design Lab (ND), Systems Group, Phone: +41 779421314 Department of Computer Science, ETH Zürich Web: https://bdebopam.github.io EDUCATION M.S. Security and Mobile Computing (NordSecMob) KTH Royal Institute of Technology, Sweden + Aalto University, Finland, 2016 B.E. Computer Science & Engineering Jadavpur University, India, 2009 EMPLOYMENT 10/2016 – Systems Group, Department of Computer Science, ETH Zürich, Switzerland PhD Candidate, Network Design Lab PhD supervisor: Prof. Dr. Ankit Singla 06/2019 – 08/2019 Max Planck Institute for Informatics, Saarbrücken, Germany Research Fellow at Internet Architecture group Supervisor: Prof. Dr. Anja Feldmann 06/2015 – 07/2016 Computer Science and Engineering Dept., Aalto University, Finland Research/Teaching Assistant Supervisor: Prof. Dr. Tuomas Aura, Prof. Dr. Andrei Gurtov 08/2009 – 08/2014 PwC & Deloitte, India Senior Technology Consultant, Technology Consultant RESEARCH INTERESTS Low-Earth orbit satellite networks, Internet architecture, low-latency networks and applications, congestion control. PUBLICATIONS Refereed Publications 2020 In-orbit computing: an outlandish thought experiment? [ACM HotNets] (DB, Simon Kassing), Melissa Licciardello, Ankit Singla 2020 “Internet from Space” without Inter-satellite Links? [ACM HotNets] Yannick Hauri, DB, Manuel Grossmann, Ankit Singla 2020 Exploring the “Internet from space” with Hypatia [ACM IMC] (Simon Kassing, DB), André Baptista Águas, Jens Eirik
    [Show full text]
  • 1-S2.0-S0040162518316378-Main
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Vicente-Saez, Ruben; Gustafsson, Robin; Van den Brande, Lieve The dawn of an open exploration era Published in: Technological Forecasting and Social Change DOI: 10.1016/j.techfore.2020.120037 Published: 01/07/2020 Document Version Publisher's PDF, also known as Version of record Published under the following license: CC BY Please cite the original version: Vicente-Saez, R., Gustafsson, R., & Van den Brande, L. (2020). The dawn of an open exploration era: Emergent principles and practices of open science and innovation of university research teams in a digital world. Technological Forecasting and Social Change, 156, [120037]. https://doi.org/10.1016/j.techfore.2020.120037 This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. Powered by TCPDF (www.tcpdf.org) Technological Forecasting & Social Change 156 (2020) 120037 Contents lists available at ScienceDirect Technological Forecasting & Social Change journal homepage: www.elsevier.com/locate/techfore The dawn of an open exploration era: Emergent principles and practices of T open science and innovation of university research teams in a digital world ⁎ Ruben Vicente-Saeza,b, , Robin Gustafssona, Lieve Van den Brandec,d a Aalto University, Finland b University of Valencia, Spain c European Commission - DG Employment, Belgium d Free University of Brussels (VUB), Belgium ARTICLE INFO ABSTRACT Keywords: Principles and practices of open science at universities are evolving.
    [Show full text]
  • W-C International Workshop on V2X Communications and Channel Modeling
    W-C International Workshop on V2X Communications and Channel Modeling Time EDAS Number Title Authors with Affiliations 9.00 Part I - Second Workshop on V2X Channel Measurements and Modeling (WVCM 2018) 9.00-9.36 Keynote H2020 5GCAR: Objectives, Technology Components and Enablers Dr. M. Condoluci, Ericsson AB, Sweden Gabriel Guieiro (Federal University of Ouro Preto, Brazil); Pedro Henrique de Oliveira Gomes Evaluation of Shadowing Caused by Mining Machinery in V2I (Federal University of Ouro Preto & Vale Institute of Technology, Brazil); Erika P. L. Almeida 9.37-9.54 1570460403 Communications (Aalborg University & INDT - Institute of Technology Development, Denmark); Luis Guilherme Uzeda Garcia (Nokia Bell Labs, France) Jonas Gedschold, Christian Schneider and Martin Käske (Ilmenau University of Technology, Germany); Mate Boban (Huawei German Research Center, Germany); Jian Luo (Huawei Tracking Based Multipath Clustering in Vehicle-to-Infrastructure 9.55-10.13 1570459752 Technologies Duesseldorf GmbH, Germany); Reiner S. Thomä (Ilmenau University of Technology, Channels Germany); Giovanni Del Galdo (Fraunhofer Institute for Integrated Circuits IIS & Technische Universität Ilmenau, Germany) Fred Wiffen and Lawrence Sayer (University of Bristol, United Kingdom (Great Britain)); Comparison of OTFS and OFDM in Ray Launched sub-6GHz and 10.13-10.30 1570463462 Mohammud Z Bocus (Toshiba Research Europe Ltd, United Kingdom (Great Britain)); Angela mmWave Line-of-Sight Mobility Channels Doufexi and Andrew Nix (University of Bristol,
    [Show full text]
  • METAMORPHOSE VI – the Virtual Institute
    METAMORPHOSE VI – the Virtual Institute for artificial electromagnetic materials and metamaterials: Origin, mission, and activities Bilotti, F., Rockstuhl, C., Schuchinsky, A., & Tretyakov, S. (2014). METAMORPHOSE VI – the Virtual Institute for artificial electromagnetic materials and metamaterials: Origin, mission, and activities. EPJ Advanced Metamaterials, 1(1). https://doi.org/10.1051/epjam/2014002 Published in: EPJ Advanced Metamaterials Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © F. Bilotti et al., Published by EDP Sciences, 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:24. Sep. 2021 EPJ Appl. Metamat. 2014, 1,1 Ó F.
    [Show full text]
  • European Partner Universities to University of Southern Denmark
    European partner universities to University of Southern Denmark Austria FH Joanneum FHS Kufstein Tirol University of Applied Sciences Graz University of Technology Management Center Innsbruck MODUL University Vienna Salzburg University of Applied Sciences University of Applied Sciences Technikum Wien University of Applied Sciences Upper Austria University of Applied Sciences Wiener Neustadt University of Graz University of Vienna Belgium Ghent University Hasselt University ICHEC Brussels Management School KU Leuven Université Catholique de Louvain University College Gent Bulgaria Sofia University 'Saint Kliment Ohridski' Technical University of Sofia Croatia University of Zadar Cypern University of Cyprus Czech Republic Brno University of Technology Charles University in Prague Czech Technical University in Prague Czech University of Life Sciences Prague Masaryk University Metropolitan University Prague University of Economics, Prague University of Palacky University of Pardubice University of West Bohemia VSB - Technical University of Ostrava Denmark University of Greenland University of the Faroe Islands Estonia Tallinn University of Applied Sciences (TTK) Tallinn University of Technology University of Tartu Finland Hanken School of Economics Lappeenranta University of Technology Oulu University of Applied Sciences South-Eastern Finland University of Applied Sciences Tampere University of Applied Sciences (TAMK) Tampere University of Technology University of Eastern Finland University of Helsinki University of Jyväskylä University of
    [Show full text]