It's Pretty Super! - A Mathematical Study of Superspace in Fourdimensional, Unextended Supersymmetry Eric Friden´ June 12, 2012 Abstract Superspace is a fundamental tool in the study of supersymmetry, one that while often used is seldom defined with a proper amount of mathematical rigor. This paper examines superspace and presents three different constructions of it, the original by Abdus Salam and J. Strathdee, as well as two modern methods by Alice Rogers and Buchbinder-Kuzenko. Though the structures arrived at are the same the two modern construc- tions differ in methods, elucidating different important aspects of super- space. Rogers focuses on the underlying structure through the study of supermanifolds, and Buchbinder-Kuzenko the direct correlation with the Poincar´esuperalgebra, and the parametrisation in terms of exponents. Thanks Thanks to my supervisor Ulf Lindstr¨omfor giving me the opportunity to dive deep into a scary ocean of unknown and exciting mathematics. It has been a wild ride. Hugs and high-fives to all my friends and acquaintances from the student organisation Moebius; for being a neverending spring of clever, clever people doing stupid, stupid things. Thanks to Valentina Chapovalova, who has been my closest friend, my role model, my anchor and my muse for all of my adult life. And lastly, a sign of love and respect to my parents and my extended family. Your support is the foundation upon which I have built my life. Thank you all. Uppsala Univeritet Eric Friden´
[email protected] Contents 1 Introduction 3 2 Minkowski Space - the Non-Super Case 4 2.1 Minkowski space .