Clozapine: Selective Labeling of Sites Resembling 5HT6 Serotonin Receptors May Reflect Psychoactive Profile

Total Page:16

File Type:pdf, Size:1020Kb

Clozapine: Selective Labeling of Sites Resembling 5HT6 Serotonin Receptors May Reflect Psychoactive Profile Clozapine: Selective Labeling of Sites Resembling 5HT6 Serotonin Receptors May Reflect Psychoactive Profile Charles E. Glatt, Adele M. Snowman, David R. Sibley, and Solomon H. Snyder Departments of Neuroscience, Pharmacology, and Molecular Sciences, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A., and Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, U.S.A. ABSTRACT Background: Clozapine, the classic atypical neuroleptic, receptors consistent with the drug's anticholinergic exerts therapeutic actions in schizophrenic patients un- actions. The drug competition profile of the second responsive to most neuroleptics. Clozapine interacts with site most closely resembles 5HT6 serotonin recep- numerous neurotransmitter receptors, and selective ac- tors, though serotonin itself displays low affinity. tions at novel subtypes of dopamine and serotonin re- [3H]Clozapine binding levels are similar in all brain ceptors have been proposed to explain clozapine's regions examined with no concentration in the cor- unique psychotropic effects. To identify sites with which pus striatum. clozapine preferentially interacts in a therapeutic setting, Conclusions: Besides muscarinic receptors, clozapine we have characterized clozapine binding to brain mem- primarily labels sites with properties resembling 5HT6 branes. serotonin receptors. If this is also the site with which Materials and Methods: [3H]Clozapine binding was clozapine principally interacts in intact human brain, it examined in rat brain membranes as well as cloned- may account for the unique beneficial actions of cloza- expressed 5-HT6 serotonin receptors. pine and other atypical neuroleptics, and provide a mo- Results: [3H]Clozapine binds with low nanomolar lecular target for developing new, safer, and more effec- affinity to two distinct sites. One reflects muscarinic tive agents. INTRODUCTION ifested by more recently developed atypical Clozapine is an important therapeutic agent in neuroleptics, including risperidone, olanz- treating schizophrenia. Though developed as a epine, seroquel, and sertindole (2). neuroleptic, it is unique in its therapeutic pro- Therapeutic actions of conventional neuro- file and may provide major benefits to patients leptics correlate closely with their potencies in who are resistant to other neuroleptics (1,2). blocking dopamine D2 receptors, which pre- Even in patients who respond to conventional sumably explains their therapeutic and EPS neuroleptics, clozapine may be more effica- actions (3-5). Imaging D2 receptors in humans cious (2). Clozapine appears to relieve negative by positron emission tomography reveals less symptoms, including apathy and emotional occupancy of D2 receptors by atypical than withdrawal, that resist conventional neurolep- conventional neuroleptics, when administered tics and displays a very low incidence of extra- at clinically effective doses (6). The lesser inci- pyramidal side effects (EPS). Diminished EPS dence of EPS associated with the atypical drugs and greater therapeutic efficacy are also man- may also reflect their greater anticholinergic potencies, as muscarinic anticholinergic drugs Address correspondence and reprint requests to: Solomon H. Snyder, Johns Hopkins University School of Medicine, are well known to relieve Parkinsonian, EPS 725 N. Wolfe Street, Baltimore, MD 21205, U.S.A. symptoms (7,8). 398 Copyright © 1995, Molecular Medicine, 1076-1551/95/$10.50/0 Molecular Medicine, Volume 1, Number 4, May 1995 398-406 C. E. Glatt et al.: Clozapine Binding Sites 399 To explain the greater antischizophrenic ac- Preparation of Membranes from 5HT6 tions of atypical neuroleptics, researchers have Receptor Expressing Cells evaluated effects of these drugs at novel sites. Thus, Human embryonic kidney 293 cells stably expressing clozapine displays uniquely high affinity for dopa- rat 5HT6 receptors were grown in D-modified Eagle's mine D4 receptors (9). Serotonin 5HT2 receptors medium with 10% FBS, 1 mM sodium pyruvate, and have also been implicated. Ritanserin, a selective G418 at 300 ,ug/ml. Cells were grown to confluence, 5HT2 antagonist, decreases EPS elicited by haloper- rinsed with 5 ml 0.5 mM EDTA in phosphate buff- idol (10). Mianserin, also a 5HT2 antagonist, re- ered saline (PBS). Cells were then washed for 5 min lieves negative symptoms in schizophrenics receiv- with an additional 5 ml EDTA/PBS. Cells were re- ing conventional neuroleptics (11). Compared leased by this treatment and treated as above for with conventional neuroleptics, atypical drugs tend brain membranes. Final membrane concentration to have higher affinities for 5HT2 than D2 receptors was -10.0 mg/ml protein. These cells express ap- (12). However, there are exceptions such as chlor- proximately 800 fmol/mg protein of 5HT6 receptor promazine and amoxapine, both more potent at binding activity (14). 5HT2 than D2 sites (13). To assess clozapine actions at various receptors, most studies have evaluated clozapine's potency in [3H]Clozapine Binding Assays competing for the binding of radioligands. How- Binding assays were performed in a final volume ever, ligands exert "induced fit", altering receptor of 500 ,l Tris HCI, pH 7.4. Membrane prepara- conformation so that the potency of a drug in tion (0.25 ml) was added to each tube. Com- competing for binding of a radioligand may not pounds for competition were added in a 50-p,l faithfully reflect that drug's propensity to bind to volume. Fifty microliters of a 2% bovine serum the receptor in vivo. Ideally, one would like to albumin (BSA) solution was added to reduce specify the receptors to which clozapine binds nonspecific filter binding. [3H] Clozapine (specific when encountering the human brain in vivo. activity 51.3-89.1 Ci/mmol) in 50 ptl was added To evaluate sites to which clozapine binds to give a final concentration of 1 nM. For all preferentially, we have examined the binding of experiments performed in the presence of sco- [3H]clozapine itself to rat brain membranes. We polamine, 100 p,l was added to give a final con- report labeling of muscarinic cholinergic recep- centration of 10 nM. For the initial experiments tors as well as sites resembling 5HT6 serotonin without scopolamine, 100 gl of distilled water receptors. were used. Nonspecific binding was determined by addition of 1 ,M (final concentration) unla- beled clozapine. Tubes were incubated for 20 MATERIALS AND METHODS min at 37°C. The incubation was terminated by rapid filtration over 0.5% All unlabeled drugs were obtained from Research polyethyleneimine- soaked filters (GF/B) and washed 2x 3 ml with Biochemicals International (Natick, MA, U.S.A.). ice-cold 50 mM NaCl. [3H]Clozapine was generously provided by Dr. S. Hurt NEN-Dupont (Boston, MA, U.S.A.). RESULTS Preparation of Rat Brain Membranes As an initial screen, we evaluated inhibition Sprague-Dawley rats (200-300 g) were killed by of [3H]clozapine binding by agents acting at decapitation. Brains were rapidly removed and sites where clozapine is thought to exert effects specific brain regions dissected. Tissue was ho- (Table 1). Scopolamine and atropine are uniquely mogenized by Polytron in 50 mM Tris HCI, pH potent with IC50 values of 0.8 nM and 1.0 nM, 7.4, at 4°C. Homogenates were centrifuged at respectively. Scopolamine maximally inhibits 48,000 X g for 10 min. Pellets were resuspended about 60% of [3H]clozapine binding at 5 nM (Fig. and rehomogenized in the same buffer and cen- 1). Accordingly, in all subsequent experiments we trifuged a second time at 48,000 X g for 10 min. include 10 nM scopolamine so that hereafter Pellets were resuspended in 50 mM Tris HCI, pH [3H]clozapine binding will refer to binding mea- 7.4, to a concentration of 15 mg/ml. Except in sured in the presence of scopolamine. regional dissection studies, membranes from [3H] Clozapine binding is saturable with a Kd of whole rat brain minus cerebellum were em- 4.5 nM and Bmax of 380 fmol/mg protein (Fig. 2a). ployed for binding assays. Scatchard analysis of [3H]clozapine binding as well 400 Molecular Medicine, Volume 1, Number 4, May 1995 TABLE 1. Drug effect on [3Hlclozapine 1.2- binding in rat brain membranes 1.0 a 0 Drug Ki (nM) a 0.8 Histamine HI n II Triprolidine 1,000 0.6 Adrenergic a 1 0 E41 n Prazosin >10,000 OA0 0 n Muscarinic 0a0 Cholinergic 0.2 Scopolamine 0.8 Atropine 1.0 V.Unn- I .......... Butyrophenones -1010 i04 10 10-7 o10, Concentration of Scopolamine (nM) 400 Pipamperone FIG. 1. Inhibition of [3HIclozapine binding to Spiperone 30 rat brain membranes by scopolamine Phenothiazines Shown is a typical displacement curve for [3H]cloza- Fluphenazine 20 pine bound to rat brain membranes. The data repre- Trifluoperazine 30 sent the mean percent of maximum specific binding (defined with 1 ,tM clozapine). The experiment was Thioridazine 30 replicated three times. Chlorpromazine 20 Tricyclic ,tM, almost 1000 times higher than its affinity for Antidepressants histamine HI receptors. The potent a-I adreno- Nortriptyline 30 ceptor antagonist prazosin has an IC50 greater Imipramine 150 than 10 mM. Similarly, agents active at sigma, Amitriptyline 30 GABA, and glutamate receptors display low af- Ergot Alkaloids finity for [3H]clozapine sites. Ergotamine 10 Clozapine is well known to influence dopa- Dihydroergotamine 20 mine receptors with an IC50 for D1 and D2 recep- tors of 172 nM and 182 nM, respectively (3). Ac- cordingly, we compared the potencies of various Increasing concentrations of the indicated compounds were agents in competing for used to inhibit the binding of 1 nM [3H]clozapine to rat dopamine-related brain membranes. Ki values were determined from the [3H]clozapine binding with their affinities for 'C50's by the method of Cheng and Prusoff (15). Results cloned and expressed D1, D2, D3, and D4 receptors in are the means of at least two experiments run duplicate. (Table 3). [3H]Clozapine does not seem to bind to Dia or Dlb receptors (Dib being the same as D5).
Recommended publications
  • Product List March 2019 - Page 1 of 53
    Wessex has been sourcing and supplying active substances to medicine manufacturers since its incorporation in 1994. We supply from known, trusted partners working to full cGMP and with full regulatory support. Please contact us for details of the following products. Product CAS No. ( R)-2-Methyl-CBS-oxazaborolidine 112022-83-0 (-) (1R) Menthyl Chloroformate 14602-86-9 (+)-Sotalol Hydrochloride 959-24-0 (2R)-2-[(4-Ethyl-2, 3-dioxopiperazinyl) carbonylamino]-2-phenylacetic 63422-71-9 acid (2R)-2-[(4-Ethyl-2-3-dioxopiperazinyl) carbonylamino]-2-(4- 62893-24-7 hydroxyphenyl) acetic acid (r)-(+)-α-Lipoic Acid 1200-22-2 (S)-1-(2-Chloroacetyl) pyrrolidine-2-carbonitrile 207557-35-5 1,1'-Carbonyl diimidazole 530-62-1 1,3-Cyclohexanedione 504-02-9 1-[2-amino-1-(4-methoxyphenyl) ethyl] cyclohexanol acetate 839705-03-2 1-[2-Amino-1-(4-methoxyphenyl) ethyl] cyclohexanol Hydrochloride 130198-05-9 1-[Cyano-(4-methoxyphenyl) methyl] cyclohexanol 93413-76-4 1-Chloroethyl-4-nitrophenyl carbonate 101623-69-2 2-(2-Aminothiazol-4-yl) acetic acid Hydrochloride 66659-20-9 2-(4-Nitrophenyl)ethanamine Hydrochloride 29968-78-3 2,4 Dichlorobenzyl Alcohol (2,4 DCBA) 1777-82-8 2,6-Dichlorophenol 87-65-0 2.6 Diamino Pyridine 136-40-3 2-Aminoheptane Sulfate 6411-75-2 2-Ethylhexanoyl Chloride 760-67-8 2-Ethylhexyl Chloroformate 24468-13-1 2-Isopropyl-4-(N-methylaminomethyl) thiazole Hydrochloride 908591-25-3 4,4,4-Trifluoro-1-(4-methylphenyl)-1,3-butane dione 720-94-5 4,5,6,7-Tetrahydrothieno[3,2,c] pyridine Hydrochloride 28783-41-7 4-Chloro-N-methyl-piperidine 5570-77-4
    [Show full text]
  • Determination of Sex 43, Elm Park Gardens, THOSE Who Are Interested in the Heredity of Sex Chelsea, S.W.Lo
    APRIL 14, 1934 NATURE 579 sa was correctly computed in five minutes, 510 in genes outweigh the female and the result is the twenty seconds and 610 in seventy seconds. normal haplo-X male." Division was a slower process and 9 digits divided Thus, as my italics show, the experimental by 3 took times varying from two and a half to geneticist seems to agree with what Prof. MacBride seven and three quarters minutes. has expressed in more generally intelligible language ; Square roots of 6 digit numbers were extracted in not only in admitting the essential sameness of sex less than a minute while cube roots took longer. in all organisms but also in understanding the Curiously enough, the memorising of a number of function of proportion in its determination in some 27 digits was not done successfully, although he of them. Unanimity among the different branches of could repeat questions which had been put to him biology has therefore been reached after a long period and their answers after some days had elapsed, and of divergence, from entirely different data and, what would break off calculations in the middle to ask for is more, apparently unawares. Such an event, surely, milk or cigarettes, taking up the calculations again should not be allowed to pass without notice and where he had broken off. His methods of working without applause. The usual view that the chromo­ were not discovered, but he had obviously memorised some theory of sex determination criticised by the squares of two digit numbers, and less completely MacBride was a special hypothesis put forward by the products of two digit numbers.
    [Show full text]
  • Medications and Alcohol Craving
    Medications and Alcohol Craving Robert M. Swift, M.D., Ph.D. The use of medications as an adjunct to alcoholism treatment is based on the premise that craving and other manifestations of alcoholism are mediated by neurobiological mechanisms. Three of the four medications approved in the United States or Europe for treating alcoholism are reported to reduce craving; these include naltrexone (ReVia™), acamprosate, and tiapride. The remaining medication, disulfiram (Antabuse®), may also possess some anticraving activity. Additional medications that have been investigated include ritanserin, which has not been shown to decrease craving or drinking levels in humans, and ondansetron, which shows promise for treating early onset alcoholics, who generally respond poorly to psychosocial treatment alone. Use of anticraving medications in combination (e.g., naltrexone plus acamprosate) may enhance their effectiveness. Future studies should address such issues as optimal dosing regimens and the development of strategies to enhance patient compliance. KEY WORDS: AOD (alcohol and other drug) craving; anti alcohol craving agents; alcohol withdrawal agents; drug therapy; neurobiological theory; alcohol cue; disulfiram; naltrexone; calcium acetylhomotaurinate; dopamine; serotonin uptake inhibitors; buspirone; treatment outcome; reinforcement; neurotransmitters; patient assessment; literature review riteria for defining alcoholism Results of craving research are often tions (i.e., pharmacotherapy) to improve vary widely. Most definitions difficult to interpret,
    [Show full text]
  • Selective Labeling of Serotonin Receptors Byd-[3H]Lysergic Acid
    Proc. Nati. Acad. Sci. USA Vol. 75, No. 12, pp. 5783-5787, December 1978 Biochemistry Selective labeling of serotonin receptors by d-[3H]lysergic acid diethylamide in calf caudate (ergots/hallucinogens/tryptamines/norepinephrine/dopamine) PATRICIA M. WHITAKER AND PHILIP SEEMAN* Department of Pharmacology, University of Toronto, Toronto, Canada M5S 1A8 Communicated by Philip Siekevltz, August 18,1978 ABSTRACT Since it was known that d-lysergic acid di- The objective in this present study was to improve the se- ethylamide (LSD) affected catecholaminergic as well as sero- lectivity of [3H]LSD for serotonin receptors, concomitantly toninergic neurons, the objective in this study was to enhance using other drugs to block a-adrenergic and dopamine receptors the selectivity of [3HJISD binding to serotonin receptors in vitro by using crude homogenates of calf caudate. In the presence of (cf. refs. 36-38). We then compared the potencies of various a combination of 50 nM each of phentolamine (adde to pre- drugs on this selective [3H]LSD binding and compared these clude the binding of [3HJLSD to a-adrenoceptors), apmo ie, data to those for the high-affinity binding of [3H]serotonin and spiperone (added to preclude the binding of [3H[LSD to (39). dopamine receptors), it was found by Scatchard analysis that the total number of 3H sites went down to 300 fmol/mg, compared to 1100 fmol/mg in the absence of the catechol- METHODS amine-blocking drugs. The IC50 values (concentrations to inhibit Preparation of Membranes. Calf brains were obtained fresh binding by 50%) for various drugs were tested on the binding of [3HLSD in the presence of 50 nM each of apomorphine (A), from the Canada Packers Hunisett plant (Toronto).
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Headshop Highs & Lows
    HeadshopHeadshop HighsHighs && LowsLows AA PresentationPresentation byby DrDr DesDes CorriganCorrigan HeadshopsHeadshops A.K.A.A.K.A. ““SmartSmart ShopsShops””,, ““HempHemp ShopsShops””,, ““HemporiaHemporia”” oror ““GrowshopsGrowshops”” RetailRetail oror OnlineOnline OutletsOutlets sellingselling PsychoactivePsychoactive Plants,Plants, ‘‘LegalLegal’’ && ““HerbalHerbal”” HighsHighs asas wellwell asas DrugDrug ParaphernaliaParaphernalia includingincluding CannabisCannabis growinggrowing equipment.equipment. Headshops supply Cannabis Paraphernalia HeadshopsHeadshops && SkunkSkunk--typetype (( HighHigh Strength)Strength) CannabisCannabis 1.1. SaleSale ofof SkunkSkunk--typetype seedsseeds 2.2. AdviceAdvice onon SinsemillaSinsemilla TechniqueTechnique 3.3. SaleSale ofof HydroponicsHydroponics && IntenseIntense LightingLighting .. CannabisCannabis PotencyPotency expressedexpressed asas %% THCTHC ContentContent ¾¾ IrelandIreland ¾¾ HerbHerb 6%6% HashHash 4%4% ¾¾ UKUK ¾¾ HerbHerb** 1212--18%18% HashHash 3.4%3.4% ¾¾ NetherlandsNetherlands ¾¾ HerbHerb** 20%20% HashHash 37%37% * Skunk-type SkunkSkunk--TypeType CannabisCannabis && PsychosisPsychosis ¾¾ComparedCompared toto HashHash smokingsmoking controlscontrols ¾¾ SkunkSkunk useuse -- 77 xx riskrisk ¾¾ DailyDaily SkunkSkunk useuse -- 1212 xx riskrisk ¾¾ DiDi FortiForti etet alal .. Br.Br. J.J. PsychiatryPsychiatry 20092009 CannabinoidsCannabinoids ¾¾ PhytoCannabinoidsPhytoCannabinoids-- onlyonly inin CannabisCannabis plantsplants ¾¾ EndocannabinoidsEndocannabinoids –– naturallynaturally occurringoccurring
    [Show full text]
  • A Clinical Trial of the Prolactin Inhibitor Metergoline in the Treatment of Canine Pseudopregnancy
    __________________________________________________________Revista Científica, FCV-LUZ / Vol. XII, Nº 6, 712-714, 2002 A CLINICAL TRIAL OF THE PROLACTIN INHIBITOR METERGOLINE IN THE TREATMENT OF CANINE PSEUDOPREGNANCY Estudio Clínico del Inhibidor de la Prolactina Metergolina en el Tratamiento de la Pseudopreñez Canina Gervasio Castex, Yanina Corrada y Cristina Gobello Institute of Theriogenology, Faculty of Veterinary Sciences, National University of La Plata. 60th & 118th st. La Plata. B1900AWV, Argentina. E-mail: [email protected] ABSTRACT de los signos es extremadamente variable en las distintas pe- rras. La metergolina, es esencialmente un antagonista seroto- Canine pseudopregnancy is a syndrome, characterized by ninérgico que inhibe la secreción de prolactina. Un total 24 pe- signs such as nesting, weight gain, mammary enlargement and rras mestizas y de raza, manifiestamente pseudopreñadas, lactation, which appear in nonpregnant bitches 6 to 12 weeks fueron distribuidas en dos grupos de 10 y 14 animales respec- after estrus. The intensity of these signs is extremely variable tivamente: placebo (PL) y metergolina (ME, tratadas con me- among bitches. Metergoline is essentially a serotoninergic an- tergolina 0.1 mg/Kg cada 12 h oral durante 10 días). En los tagonist that inhibits prolactin secretion. A total of 24 cross and días -1,7y14(día 0: comienzo del tratamiento) todos los ani- pure-bred, overtly pseudopregnant bitches, were randomly al- males fueron clasificados en grados de intensidad según los located to two groups of 10 and 14 animals respectively each: signos clínicos de pseudopreñez (II, I, 0). La presencia o au- placebo (PL) and metergoline (ME, treated with metergoline sencia de efectos colaterales también fue evaluada.
    [Show full text]
  • Alcoholism Pharmacotherapy
    101 ALCOHOLISM PHARMACOTHERAPY JOSEPH R. VOLPICELLI SUCHITRA KRISHNAN-SARIN STEPHANIE S. O’MALLEY Alcoholism remains one of the most common and signifi- PHARMACOLOGIC TREATMENTS FOR cant medical problems in the United States and internation- ALCOHOL DETOXIFICATION ally. For example, in the United States, over 4% of the general population is alcohol dependent and another 5 to The first step in the pharmacologic treatment of alcoholism 10 million people drink hazardously at least several times is to help patients safely detoxify from alcohol. Although per month (1). The economic and medical costs of alcohol- historically, alcohol detoxification has occurred in inpatient ism and alcohol abuse continue to escalate. Most recent setting, increasingly alcohol detoxification is being con- figures put the economic costs of alcohol-related expenses ducted in ambulatory settings. Except in the case of medical at $176 billion annually in the United States (2). This in- or psychiatric emergencies, outcome studies generally show cludes the economic costs of increased health care expenses, that successful detoxification can safely and effectively be lost productivity at work, and legal expenses. Similarly, al- carried out in ambulatory setting using medications such though there have been some reductions in the number of as benzodiazepines (5,6). In addition, the use of anticonvul­ motor vehicle deaths attributed to excessive alcohol drink- sants has received recent interest. ing, the overall number of alcohol-related annual deaths is 105,000 in the United States (3). Benzodiazepines Current psychosocial approaches to alcohol addiction are moderately effective, with perhaps as many as half the pa- Benzodiazepines are �-aminobutyric acid (GABA) agonists tients receiving treatment becoming abstinent or signifi- that metaanalysis of placebo-controlled double-blind studies cantly reducing episodes of binge drinking (4).
    [Show full text]
  • Ergot Alkaloids As Dopamine Agonists: Comparison in Two Rodent Models
    European Journal of Pharmacology, 37 (1976) 295-302 295 © North-Holland Publishing Company, Amsterdam - Printed in The Netherlands ERGOT ALKALOIDS AS DOPAMINE AGONISTS: COMPARISON IN TWO RODENT MODELS GILL ANLEZARK, CHRIS PYCOCK and BRIAN MELDRUM Department of Neurology, Institute of Psychiatry, Denmark Hill, London, SE5 8AF, U.K. Received 18 December 1975, revised MS received 20 February 1976, accepted 26 February 1976 G. ANLEZARK, C. PYCOCK and B. MELDRUM, Ergot alkaloids as dopamine agonists: comparison in two rodent models, European J. Pharmacol. 37 (1976) 295-302. A series of ergot alkaloids, together with the DA agonists apomorphine and piribedil, were tested for protec- tive effects against audiogenic seizures in an inbred strain of mice (DBA/2) and for induction of circling behaviour in mice with unilateral destruction of one nigrostriatal DA pathway. The order of potency against audiogenic sei- zures was apomorphine> ergocornine> bromocryptine > ergometrine> LSD> methysergide > piribedil while that observed in the rotating mouse model was apomorphine> ergometrine> ergocornine> brornocryptine > piribedil. LSD caused only weak circling behaviour even when administered in high doses (> 1 mg/kg). Methyser- gide was ineffective. Prior administration of the neuroleptic agent haloperidol blocked the effect of DA agonists and of ergot alkaloids in both animal models. The possible action of ergot alkaloids as DA agonists is discussed. Ergot alkaloids Audiogenic seizures Dopamine agonists Circling behaviour 1. Introduction gic synapses, in two rodent pharmacological models. The first model studied is 'audiogen- The pharmacology of the ergot alkaloids is ic' seizures in genetically susceptible mice. complex and not well understood. Peripheral- The severity of the seizure responses to audi- ly, they act on smooth muscle as 5-hydroxy- tory stimulation can be modified by a variety tryptamine (5-HT) antagonists (Goodman and of drugs believed to act on monoaminergic Gilman, 1971) and as a-adrenergic blockers transmission in the brain (Lehmann, 1970).
    [Show full text]
  • WO 2010/099522 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 2 September 2010 (02.09.2010) WO 2010/099522 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 45/06 (2006.01) A61K 31/4164 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/4045 (2006.01) A61K 31/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2010/025725 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 1 March 2010 (01 .03.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/156,129 27 February 2009 (27.02.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, HELSINN THERAPEUTICS (U.S.), INC.
    [Show full text]
  • Effects of Typical and Atypical Antipsychotics and Receptor
    Effects of Typical and Atypical Antipsychotics and Receptor Selective Compounds on Acetylcholine Efflux in the Hippocampus of the Rat Sudabeh Shirazi-Southall, M.A., Dana Ellen Rodriguez, A.H.T., George G. Nomikos, M.D., Ph.D. Some atypical antipsychotic drugs appear to improve 100,907), the 5-HT2C (SB 242,084), the 5-HT6 (Ro 04-6790), ␣ cognitive function in schizophrenia and since acetylcholine the D2 (raclopride) receptors, and the 1-adrenoceptors (ACh) is of importance in cognition, we used in vivo (prazosin) modestly increased ACh by about 50%. The ϩ ␣ microdialysis to examine the effects of antipsychotics 5-HT1A agonist R-( )-8-OH-DPAT and the 2- administered acutely (SC or IP) at pharmacologically adrenoceptor antagonist yohimbine significantly increased comparable doses on ACh outflow in the hippocampus of the ACh by about 100% and 50%, respectively. Thus, olanzapine rat. The atypical antipsychotics olanzapine and clozapine and clozapine increased ACh to a greater extent than other tested produced robust increases in ACh up to 1500% and 500%, antipsychotics, explaining perhaps their purported beneficial respectively. The neuroleptics haloperidol, thioridazine, and effect in cognitive function in schizophrenia. It appears that chlorpromazine, as well as the atypical antipsychotics selective activity at each of the monoaminergic receptors studied risperidone and ziprasidone produced modest increases in is not the sole mechanism underlying the olanzapine and ACh by about 50–100%. Since most atypical antipsychotics clozapine induced increases in hippocampal ACh. affect a variety of monoaminergic receptors, we examined [Neuropsychopharmacology 26:583–594, 2002] whether selective ligands for some of these receptors affect © 2002 American College of Neuropsychopharmacology.
    [Show full text]
  • Risk Assessment of Argyreia Nervosa
    Risk assessment of Argyreia nervosa RIVM letter report 2019-0210 W. Chen | L. de Wit-Bos Risk assessment of Argyreia nervosa RIVM letter report 2019-0210 W. Chen | L. de Wit-Bos RIVM letter report 2019-0210 Colophon © RIVM 2020 Parts of this publication may be reproduced, provided acknowledgement is given to the: National Institute for Public Health and the Environment, and the title and year of publication are cited. DOI 10.21945/RIVM-2019-0210 W. Chen (author), RIVM L. de Wit-Bos (author), RIVM Contact: Lianne de Wit Department of Food Safety (VVH) [email protected] This investigation was performed by order of NVWA, within the framework of 9.4.46 Published by: National Institute for Public Health and the Environment, RIVM P.O. Box1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en Page 2 of 42 RIVM letter report 2019-0210 Synopsis Risk assessment of Argyreia nervosa In the Netherlands, seeds from the plant Hawaiian Baby Woodrose (Argyreia nervosa) are being sold as a so-called ‘legal high’ in smart shops and by internet retailers. The use of these seeds is unsafe. They can cause hallucinogenic effects, nausea, vomiting, elevated heart rate, elevated blood pressure, (severe) fatigue and lethargy. These health effects can occur even when the seeds are consumed at the recommended dose. This is the conclusion of a risk assessment performed by RIVM. Hawaiian Baby Woodrose seeds are sold as raw seeds or in capsules. The raw seeds can be eaten as such, or after being crushed and dissolved in liquid (generally hot water).
    [Show full text]