Models of Transactions Structuring Applications Flat Transaction Flat

Total Page:16

File Type:pdf, Size:1020Kb

Models of Transactions Structuring Applications Flat Transaction Flat Structuring Applications • Many applications involve long transactions Models of Transactions that make many database accesses • To deal with such complex applications many transaction processing systems Chapter 19 provide mechanisms for imposing some structure on transactions 2 Flat Transaction Flat Transaction • Consists of: begin transaction – Computation on local variables • Abort causes the begin transaction • not seen by DBMS; hence will be ignored in most future discussion execution of a program ¡£ ¤¦©¨ – Access to DBMS using call or ¢¡£ ¥¤§¦©¨ that restores the statement level interface variables updated by the ¡£ ¤¦©¨ • This is transaction schedule; commit ….. applies to these operations ¢¡£ ¤§¦©¨ ….. transaction to the state • No internal structure they had when the if condition then abort • Accesses a single DBMS transaction first accessed commit commit • Adequate for simple applications them. 3 4 Some Limitations of Flat Transactions • Only total rollback (abort) is possible – Partial rollback not possible Providing Structure Within a • All work lost in case of crash Single Transaction • Limited to accessing a single DBMS • Entire transaction takes place at a single point in time 5 6 1 Savepoints begin transaction S1; Savepoints Call to DBMS sp1 := create_savepoint(); S2; sp2 := create_savepoint(); • Problem: Transaction detects condition that S3; requires rollback of recent database changes if (condition) {rollback (sp1); S5}; S4; that it has made commit • Solution 1: Transaction reverses changes • Rollback to spi causes database updates subsequent to creation itself of spi to be undone – S2 and S3 updated the database (else there is no point • Solution 2: Transaction uses the rollback rolling back over them) facility within DBMS to undo the changes • Program counter and local variables are not rolled back • Savepoint creation does not make prior database changes 7 durable (abort rolls all changes back) 8 Distributed Systems: Integration Example of Savepoints of Legacy Applications • Problem: Many enterprises support multiple • Suppose we are making airplane legacy systems doing separate tasks reservations for a long trip – Increasing automation requires that these systems be integrated – London-NY NY-Chicago Chicago-Des Moines • We might put savepoints after the code that made withdraw part the London-NY and NY-Chicago reservations return part Inventory DBMS 1 Site B • If we cannot get a reservation from Chicago to stock level Application Des Moines, we would rollback to the savepoint order part after the London-NY reservation and then perhaps Billing Site C payment DBMS 2 try to get a reservation through St Louis Application 9 10 Distributed Transactions Distributed Transactions • Incorporate transactions at multiple servers into a single (distributed) transaction • Goal: distributed transaction should be ACID – Not all distributed applications are legacy systems; some are built from scratch as distributed systems – Each subtransaction is locally ACID (e.g., local constraints maintained, locally serializable) tx_begin; Inventory DBMS 1 Site B – In addition the transaction should be globally ACID order_part; Application • A: Either all subtransactions commit or all abort withdraw_part; • C: Global integrity constraints are maintained payment; Billing DBMS 2 Site C tx_commit; Application • I: Concurrently executing distributed transactions are globally serializable Site A • D: Each subtransaction is durable 11 12 2 Banking Example Banking Example (con’t) • Global atomicity - funds transfer • Global consistency - – Either both subtransactions commit or neither does – Sum of all account balances at bank branches = total assets recorded at main office tx_begin; withdraw(acct1); deposit(acct2); tx_commit; 13 14 Exported Interfaces Banking Example (con’t) Local system might export an interface for executing • Global isolation - local serializability at each site individual SQL statements. does not guarantee global serializability – post_interest subtransaction is serialized after audit subtransaction subtransaction in DBMS at branch 1 and before audit tx_begin; DBMS 1 site B ¤§¦©¨ ¦ ¥¤¢¡¥ in DBMS at branch 2 (local isolation), but ¡£ ¢£ ¤ ¦ ¦¥§¡¥ – there is no global order ¡£ ¤§¦©¨ ¡£ ¤§¦©¨ ¦ ¤¢¡ post_interest audit DBMS 2 site C time tx_commit; ↓ sum balances at branch 1; site A subtransaction post interest at branch 1; post interest at branch 2; Alternatively, the local system might export an interface sum balances at branch 2; for executing subtransactions. 15 16 Multidatabase Transaction Hierarchy • A distributed transaction invokes subtransactions. • Set of databases accessed by a distributed • General model: one distributed transaction might transaction is referred to as a multidatabase (or invoke another as a subtransaction, yielding a federated database) hierarchical structure – Each database retains its autonomy and might support local (non-distributed) transactions Distributed transactions • Multidatabase might have global integrity constraints – e.g., Sum of balances of individual bank accounts at all branch offices = total assets stored at main office 17 18 3 Models of Distributed Transactions Distributed Transactions • Can siblings execute concurrently? • Transaction designer has little control over • Can parent execute concurrently the structure. Decomposition fixed by with children? distribution of data and/or exported • Who initiates commit? interfaces (legacy environment) Hierarchical Model: No concurrency among subtransactions, root initiates commit • Essentially a bottom-up design Peer Model: Concurrency among siblings and between parent and children, any subtransaction can initiate commit 19 20 Characteristics of Nested Transactions Nested Transactions • (1) Parent can create children to perform subtasks; children might • Problem: Lack of mechanisms that allow: execute sequentially or concurrently; – a top-down, functional decomposition of a parent waits until all children transaction into subtransactions complete (no communication – individual subtransactions to abort without between parent and children). aborting the entire transaction • (2) Each subtransaction (together with its descendants) is • Although a nested transaction looks similar isolated with respect to each sibling (and its descendants). to a distributed transaction, it is not Hence, siblings are serializable, but order is not determined conceived of as a tool for accessing a and nested transaction is non-deterministic. multidatabase • (3) Concurrent nested transactions are serializable. 21 22 Characteristics of Nested Transactions Nested Transaction - Example Booking a flight from • (4) A subtransaction is atomic. It can London to Des Moines abort or commit independently of other L -- DM C subtransactions. Commit is conditional concurrent C = commit on commit of parent (since child task is a A = abort subtask of parent task). Abort causes C L -- NY C NY -- DM abort of all subtransaction’s children. sequential • (5) Nested transaction commits when root commits. At NY -- Chic -- DM A concurrent C NY -- StL -- DM that point updates of committed subtransactions are made stop in Chicago concurrent stop in St. Louis durable. C/A A C C 23 NY -- Chic Chic -- DM NY -- StL StL -- DM24 4 Nested Transactions parent of all Characteristics of Nested nested transactions Transactions • (6) Individual subtransactions are not necessarily concurrent consistent, but nested transaction as a whole is consistent isolation isolation isolation 25 26 Structuring to Increase Example - Switch Sections Transaction Performance transaction moves student from section • Problem: In the models previously discussed, a s1 to section s2, transaction generally locks items it accesses and holds Move(s1, s2) uses TestInc, Dec locks until commit time to guarantee serializabiltiy Section abstr. acquire lock on x release lock on x L2 TestInc(s2) Dec(s1) ↓ ↓ T1: r(x:12) .. compute .. w(x:13) commit Tuple abstr. enrollments T2: request read(x) r(x:13) ..compute.. w(x:14) .. L1 Sel(t2) Upd(t2) s t o r e d i n t u p l e s Upd(t1) t1 and t2 ↑ ↑ Page abstr. (wait) acquire lock on x L0 Rd(p2) Rd(p2) Wr(p2) Rd(p1) Wr(p1) – This eliminates bad interleavings, but limits concurrency and tuples stored hence performance in pages 27 time p1 and p2 28 Chained Transactions • Problem 1 (trivial): Invoking begin_transaction at the start of each Structuring into Multiple transaction involves communication Transactions overhead • With chaining, a new transaction is started automatically for an application program when the program commits or aborts the previous one – This is the approach taken in SQL 29 30 5 Chained Transactions Chained Transactions transaction • Problem 2: If the system crashes during the starts execution of a long-running transaction, begin transaction begin transaction implicitly considerable work can be lost S1 S1 S1 commit commit commit S2 S2 begin transaction • Chaining allows a transaction S1; S3 begin transaction S2 S1 commit; commit to be decomposed into sub- S3 S3 S2 => S2; commit commit transactions with intermediate S3 commit; commit points commit S3; S2 not included in a Equivalent since Chaining • Database updates are made commit; transaction since it S2 does not access equivalent has no db operations the database durable at intermediate points => less work is lost in a crash 31 32 Example Chaining Considerations - S1; -- update recs 1 - 1000 Atomicity commit; S2; -- update recs 1001 - 2000 commit; • Transaction as a whole is not atomic. If S3; --
Recommended publications
  • Rainblock: Faster Transaction Processing in Public Blockchains
    RainBlock: Faster Transaction Processing in Public Blockchains Soujanya Ponnapalli1, Aashaka Shah1, Souvik Banerjee1, Dahlia Malkhi2, Amy Tai3, Vijay Chidambaram1,3, and Michael Wei3 1University of Texas at Austin, 2Diem Association and Novi Financial, 3VMware Research Abstract Metric No state State: 10M Ratio We present RAINBLOCK, a public blockchain that achieves Time taken to mine txs (s) 1047 6340 6× " high transaction throughput without modifying the proof-of- # Txs per block 2150 833 2.5× # work consensus. The chief insight behind RAINBLOCK is that Tx throughput (txs/s) 28.6 4.7 6× # while consensus controls the rate at which new blocks are added to the blockchain, the number of transactions in each Table 1: Impact of system state on blockchain throughput. block is limited by I/O bottlenecks. Public blockchains like This table shows the throughput of Ethereum with proof-of- Ethereum keep the number of transactions in each block low work consensus when 30K txs are mined using three miners, so that all participating servers (miners) have enough time to in two scenarios: first, there are no accounts on the blockchain, process a block before the next block is created. By removing and in the second, 10M accounts have been added. Despite the I/O bottlenecks in transaction processing, RAINBLOCK al- no other difference, tx throughput is 6× lower in the second lows miners to process more transactions in the same amount scenario; we trace this to the I/O involved in processing txs. of time. RAINBLOCK makes two novel contributions: the RAIN- BLOCK architecture that removes I/O from the critical path of processing transactions (txs), and the distributed, multi- Bitcoin [1] and Ethereum, process only tens of transactions versioned DSM-TREE data structure that stores the system per second, limiting their applications [33, 65].
    [Show full text]
  • ACS-3902 Ron Mcfadyen Slides Are Based on Chapter 5 (7Th Edition)
    ACS-3902 Ron McFadyen Slides are based on chapter 5 (7th edition) (chapter 3 in 6th edition) ACS-3902 1 The Relational Data Model and Relational Database Constraints • Relational model – Ted Codd (IBM) 1970 – First commercial implementations available in early 1980s – Widely used ACS-3902 2 Relational Model Concepts • Database is a collection of relations • Implementation of relation: table comprising rows and columns • In practice a table/relation represents an entity type or relationship type (entity-relationship model … later) • At intersection of a row and column in a table there is a simple value • Row • Represents a collection of related data values • Formally called a tuple • Column names • Columns may be referred to as fields, or, formally as attributes • Values in a column are drawn from a domain of values associated with the column/field/attribute ACS-3902 3 Relational Model Concepts 7th edition Figure 5.1 ACS-3902 4 Domains • Domain – Atomic • A domain is a collection of values where each value is indivisible • Not meaningful to decompose further – Specifying a domain • Name, data type, rules – Examples • domain of department codes for UW is a list: {“ACS”, “MATH”, “ENGL”, “HIST”, etc} • domain of gender values for UW is the list (“male”, “female”) – Cardinality: number of values in a domain – Database implementation & support vary ACS-3902 5 Domain example - PostgreSQL CREATE DOMAIN posint AS integer CHECK (VALUE > 0); CREATE TABLE mytable (id posint); INSERT INTO mytable VALUES(1); -- works INSERT INTO mytable VALUES(-1); -- fails https://www.postgresql.org/docs/current/domains.html ACS-3902 6 Domain example - PostgreSQL CREATE DOMAIN domain_code_type AS character varying NOT NULL CONSTRAINT domain_code_type_check CHECK (VALUE IN ('ApprovedByAdmin', 'Unapproved', 'ApprovedByEmail')); CREATE TABLE codes__domain ( code_id integer NOT NULL, code_type domain_code_type NOT NULL, CONSTRAINT codes_domain_pk PRIMARY KEY (code_id) ) ACS-3902 7 Relation • Relation schema R – Name R and a list of attributes: • Denoted by R (A1, A2, ...,An) • E.g.
    [Show full text]
  • Not ACID, Not BASE, but SALT a Transaction Processing Perspective on Blockchains
    Not ACID, not BASE, but SALT A Transaction Processing Perspective on Blockchains Stefan Tai, Jacob Eberhardt and Markus Klems Information Systems Engineering, Technische Universitat¨ Berlin fst, je, [email protected] Keywords: SALT, blockchain, decentralized, ACID, BASE, transaction processing Abstract: Traditional ACID transactions, typically supported by relational database management systems, emphasize database consistency. BASE provides a model that trades some consistency for availability, and is typically favored by cloud systems and NoSQL data stores. With the increasing popularity of blockchain technology, another alternative to both ACID and BASE is introduced: SALT. In this keynote paper, we present SALT as a model to explain blockchains and their use in application architecture. We take both, a transaction and a transaction processing systems perspective on the SALT model. From a transactions perspective, SALT is about Sequential, Agreed-on, Ledgered, and Tamper-resistant transaction processing. From a systems perspec- tive, SALT is about decentralized transaction processing systems being Symmetric, Admin-free, Ledgered and Time-consensual. We discuss the importance of these dual perspectives, both, when comparing SALT with ACID and BASE, and when engineering blockchain-based applications. We expect the next-generation of decentralized transactional applications to leverage combinations of all three transaction models. 1 INTRODUCTION against. Using the admittedly contrived acronym of SALT, we characterize blockchain-based transactions There is a common belief that blockchains have the – from a transactions perspective – as Sequential, potential to fundamentally disrupt entire industries. Agreed, Ledgered, and Tamper-resistant, and – from Whether we are talking about financial services, the a systems perspective – as Symmetric, Admin-free, sharing economy, the Internet of Things, or future en- Ledgered, and Time-consensual.
    [Show full text]
  • Failures in DBMS
    Chapter 11 Database Recovery 1 Failures in DBMS Two common kinds of failures StSystem filfailure (t)(e.g. power outage) ‒ affects all transactions currently in progress but does not physically damage the data (soft crash) Media failures (e.g. Head crash on the disk) ‒ damagg()e to the database (hard crash) ‒ need backup data Recoveryyp scheme responsible for handling failures and restoring database to consistent state 2 Recovery Recovering the database itself Recovery algorithm has two parts ‒ Actions taken during normal operation to ensure system can recover from failure (e.g., backup, log file) ‒ Actions taken after a failure to restore database to consistent state We will discuss (briefly) ‒ Transactions/Transaction recovery ‒ System Recovery 3 Transactions A database is updated by processing transactions that result in changes to one or more records. A user’s program may carry out many operations on the data retrieved from the database, but the DBMS is only concerned with data read/written from/to the database. The DBMS’s abstract view of a user program is a sequence of transactions (reads and writes). To understand database recovery, we must first understand the concept of transaction integrity. 4 Transactions A transaction is considered a logical unit of work ‒ START Statement: BEGIN TRANSACTION ‒ END Statement: COMMIT ‒ Execution errors: ROLLBACK Assume we want to transfer $100 from one bank (A) account to another (B): UPDATE Account_A SET Balance= Balance -100; UPDATE Account_B SET Balance= Balance +100; We want these two operations to appear as a single atomic action 5 Transactions We want these two operations to appear as a single atomic action ‒ To avoid inconsistent states of the database in-between the two updates ‒ And obviously we cannot allow the first UPDATE to be executed and the second not or vice versa.
    [Show full text]
  • What Is a Database Management System? What Is a Transaction
    What is a Database? Collection of data central to some enterprise Overview of Databases and Essential to operation of enterprise Transaction Processing Contains the only record of enterprise activity An asset in its own right Chapter 1 Historical data can guide enterprise strategy Of interest to other enterprises State of database mirrors state of enterprise Database is persistent 2 What is a Database Management What is a Transaction? System? When an event in the real world changes the A Database Management System (DBMS) state of the enterprise, a transaction is is a program that manages a database: executed to cause the corresponding change in the database state Supports a high-level access language (e.g. With an on-line database, the event causes the SQL). transaction to be executed in real time Application describes database accesses using A transaction is an application program that language. with special properties - discussed later - to DBMS interprets statements of language to guarantee it maintains database correctness perform requested database access. 3 4 What is a Transaction Processing Transaction Processing System System? Transaction execution is controlled by a TP monitor s DBMS database n o i Creates the abstraction of a transaction, t c a analogous to the way an operating system s n a r creates the abstraction of a process t DBMS database TP monitor and DBMS together guarantee the special properties of transactions TP Monitor A Transaction Processing System consists of TP monitor, databases, and transactions 5 6 1 System
    [Show full text]
  • A View-Based Approach to Relaxing Global Serializability in Multidatabase Systems
    Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 1993 A View-Based Approach to Relaxing Global Serializability in Multidatabase Systems Aidong Zhang Evaggelia Pitoura Bharat K. Bhargava Purdue University, [email protected] Report Number: 93-082 Zhang, Aidong; Pitoura, Evaggelia; and Bhargava, Bharat K., "A View-Based Approach to Relaxing Global Serializability in Multidatabase Systems" (1993). Department of Computer Science Technical Reports. Paper 1095. https://docs.lib.purdue.edu/cstech/1095 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. A VIEW-BASED APPROACH TO RELAXING GLOBAL SERIALIZABILITY IN MULTIDATABASE SYSTEMS Aldong Zhang Evaggelia PitOUI'3 Bharat Bh:Jrgava CSD TR-9J.082 December 1993 (Revised March 1994) A View-Based Approach to Relaxing Global Serializability in Multidatabase Systems Aidong Zhang, Evaggelia Pitoura, and Bharat K Bhargava Department of Computer Science Purdue University West Lafayette, IN 47907 USA Abstract In this paper, we propose a new approach to ensuring the correctness of non­ serializable executions. The approach is based on relating transaction views of the database to the integrity constraints of the system. Drawing upon this approach, we de­ velop a new correctness criterion for multidatabase concurrency control. This criterion, caUed view-based two-level serializability, relaxes global serializabitity in multidatabase systems while respecting the autonomy of local database systems. No additional re­ strictions other than serializallility are imposed on local database systems. 1 Introduction A Illultidataba.-<;e system (MDBS) is a higher-level confederation of a nWllber of pre-existing autonomolls and possibly heterogeneous database systems.
    [Show full text]
  • Concurrency Control Basics
    Outline l Introduction/problems, l definitions Introduction/ (transaction, history, conflict, equivalence, Problems serializability, ...), Definitions l locking. Chapter 2: Locking Concurrency Control Basics Klemens Böhm Distributed Data Management: Concurrency Control Basics – 1 Klemens Böhm Distributed Data Management: Concurrency Control Basics – 2 Atomicity, Isolation Synchronisation, Distributed (1) l Transactional guarantees – l Essential feature of databases: in particular, atomicity and isolation. Many users can access the same data concurrently – be it read, be it write. Introduction/ l Atomicity Introduction/ Problems Problems u Example, „bank scenario“: l Consistency must be guaranteed – Definitions Definitions task of synchronization component. Locking Number Person Balance Locking Klemens 5000 l Multi-user mode shall be hidden from users as far as possible: concurrent processing Gunter 200 of requests shall be transparent, u Money transfer – two elementary operations. ‚illusion‘ of being the only user. – debit(Klemens, 500), – credit(Gunter, 500). l Isolation – can be explained with this example, too. l Transactions. Klemens Böhm Distributed Data Management: Concurrency Control Basics – 3 Klemens Böhm Distributed Data Management: Concurrency Control Basics – 4 Synchronisation, Distributed (2) Synchronization in General l Serial execution of application programs Uncontrolled non-serial execution u achieves that illusion leads to other problems, notably inconsistency: l Introduction/ without any synchronization effort, Introduction/
    [Show full text]
  • Transaction Processing Monitors
    Chapter 24: Advanced Transaction Processing ! Transaction-Processing Monitors ! Transactional Workflows ! High-Performance Transaction Systems ! Main memory databases ! Real-Time Transaction Systems ! Long-Duration Transactions ! Transaction management in multidatabase systems 1 Database System Concepts 24.1 ©Silberschatz, Korth and Sudarshan Transaction Processing Monitors ! TP monitors initially developed as multithreaded servers to support large numbers of terminals from a single process. ! Provide infrastructure for building and administering complex transaction processing systems with a large number of clients and multiple servers. ! Provide services such as: ! Presentation facilities to simplify creating user interfaces ! Persistent queuing of client requests and server responses ! Routing of client messages to servers ! Coordination of two-phase commit when transactions access multiple servers. ! Some commercial TP monitors: CICS from IBM, Pathway from Tandem, Top End from NCR, and Encina from Transarc 2 Database System Concepts 24.2 ©Silberschatz, Korth and Sudarshan 1 TP Monitor Architectures 3 Database System Concepts 24.3 ©Silberschatz, Korth and Sudarshan TP Monitor Architectures (Cont.) ! Process per client model - instead of individual login session per terminal, server process communicates with the terminal, handles authentication, and executes actions. ! Memory requirements are high ! Multitasking- high CPU overhead for context switching between processes ! Single process model - all remote terminals connect to a single server process. ! Used in client-server environments ! Server process is multi-threaded; low cost for thread switching ! No protection between applications ! Not suited for parallel or distributed databases 4 Database System Concepts 24.4 ©Silberschatz, Korth and Sudarshan 2 TP Monitor Architectures (Cont.) ! Many-server single-router model - multiple application server processes access a common database; clients communicate with the application through a single communication process that routes requests.
    [Show full text]
  • High-Performance Transaction Processing in SAP HANA
    High-Performance Transaction Processing in SAP HANA Juchang Lee1, Michael Muehle1, Norman May1, Franz Faerber1, Vishal Sikka1, Hasso Plattner2, Jens Krueger2, Martin Grund3 1SAP AG 2Hasso Plattner Insitute, Potsdam, Germany, 3eXascale Infolab, University of Fribourg, Switzerland Abstract Modern enterprise applications are currently undergoing a complete paradigm shift away from tradi- tional transactional processing to combined analytical and transactional processing. This challenge of combining two opposing query types in a single database management system results in additional re- quirements for transaction management as well. In this paper, we discuss our approach to achieve high throughput for transactional query processing while allowing concurrent analytical queries. We present our approach to distributed snapshot isolation and optimized two-phase commit protocols. 1 Introduction An efficient and holistic data management infrastructure is one of the key requirements for making the right deci- sions at an operational, tactical, and strategic level and is core to support all kinds of enterprise applications[12]. In contrast to traditional architectures of database systems, the SAP HANA database takes a different approach to provide support for a wide range of data management tasks. The system is organized in a main-memory centric fashion to reflect the shift within the memory hierarchy[2] and to consistently provide high perfor- mance without prohibitively slow disk interactions. Completely transparent for the application, data is orga- nized along its life cycle either in column or row format, providing the best performance for different workload characteristics[11, 1]. Transactional workloads with a high update rate and point queries can be routed against a row store; analytical workloads with range scans over large datasets are supported by column oriented data struc- tures.
    [Show full text]
  • SQL Vs Nosql: a Performance Comparison
    SQL vs NoSQL: A Performance Comparison Ruihan Wang Zongyan Yang University of Rochester University of Rochester [email protected] [email protected] Abstract 2. ACID Properties and CAP Theorem We always hear some statements like ‘SQL is outdated’, 2.1. ACID Properties ‘This is the world of NoSQL’, ‘SQL is still used a lot by We need to refer the ACID properties[12]: most of companies.’ Which one is accurate? Has NoSQL completely replace SQL? Or is NoSQL just a hype? SQL Atomicity (Structured Query Language) is a standard query language A transaction is an atomic unit of processing; it should for relational database management system. The most popu- either be performed in its entirety or not performed at lar types of RDBMS(Relational Database Management Sys- all. tems) like Oracle, MySQL, SQL Server, uses SQL as their Consistency preservation standard database query language.[3] NoSQL means Not A transaction should be consistency preserving, meaning Only SQL, which is a collection of non-relational data stor- that if it is completely executed from beginning to end age systems. The important character of NoSQL is that it re- without interference from other transactions, it should laxes one or more of the ACID properties for a better perfor- take the database from one consistent state to another. mance in desired fields. Some of the NOSQL databases most Isolation companies using are Cassandra, CouchDB, Hadoop Hbase, A transaction should appear as though it is being exe- MongoDB. In this paper, we’ll outline the general differences cuted in iso- lation from other transactions, even though between the SQL and NoSQL, discuss if Relational Database many transactions are execut- ing concurrently.
    [Show full text]
  • Oracle Database Advanced Application Developer's Guide, 11G Release 2 (11.2) E17125-03
    Oracle® Database Advanced Application Developer's Guide 11g Release 2 (11.2) E17125-03 August 2010 Oracle Database Advanced Application Developer's Guide, 11g Release 2 (11.2) E17125-03 Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved. Primary Author: Sheila Moore Contributing Authors: D. Adams, L. Ashdown, M. Cowan, J. Melnick, R. Moran, E. Paapanen, J. Russell, R. Strohm, R. Ward Contributors: D. Alpern, G. Arora, C. Barclay, D. Bronnikov, T. Chang, L. Chen, B. Cheng, M. Davidson, R. Day, R. Decker, G. Doherty, D. Elson, A. Ganesh, M. Hartstein, Y. Hu, J. Huang, C. Iyer, N. Jain, R. Jenkins Jr., S. Kotsovolos, V. Krishnaswamy, S. Kumar, C. Lei, B. Llewellyn, D. Lorentz, V. Moore, K. Muthukkaruppan, V. Moore, J. Muller, R. Murthy, R. Pang, B. Sinha, S. Vemuri, W. Wang, D. Wong, A. Yalamanchi, Q. Yu This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this software or related documentation is delivered to the U.S.
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]