Linearization of monomial ideals Milo Orlich∗ March 16, 2021 Abstract We introduce a construction, called linearization, that associates to any monomial ideal I K[x ,...,x ] an ideal Lin(I) in a larger polynomial ring. ⊂ 1 n The main feature of this construction is that the new ideal Lin(I) has linear quotients. In particular, since Lin(I) is generated in a single degree, it fol- lows that Lin(I) has a linear resolution. We investigate some properties of this construction, such as its interplay with classical operations on ideals, its Betti numbers, functoriality and combinatorial interpretations. We moreover introduce an auxiliary construction, called equification, that associates to an arbitrary monomial ideal J an ideal J eq, generated in a single degree, in a poly- nomial ring with one more variable. We study some of the homological and combinatorial properties of the equification, which can be seen as a monomial analogue of the well-known homogenization construction. Contents 1 Introduction 2 2 Algebraic background 8 2.1 Free resolutions and monomial ideals . 8 arXiv:2006.11591v2 [math.AC] 15 Mar 2021 2.2 Ideals with linear quotients . 9 2.3 Cropping the exponents from above . 10 3 Linearization of equigenerated monomial ideals 12 3.1 Properties of the linearization . 13 3.1.1 Functorial properties . 14 3.1.2 Interplay of linearization and standard operations . 15 3.1.3 Polymatroidal ideals and linearization . 17 3.2 Radical of Lin(I) and Lin∗(I) ................... 19 ∗Department of Mathematics and Systems Analysis, Aalto University, Espoo, Finland. Email:
[email protected] 1 4 Linearization in the squarefree case 22 4.1 Betti numbers of Lin∗(I) .....................