An Assessment of Deep Learning Models and Word Embeddings for Toxicity Detection Within Online Textual Comments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Backpropagation and Deep Learning in the Brain
Backpropagation and Deep Learning in the Brain Simons Institute -- Computational Theories of the Brain 2018 Timothy Lillicrap DeepMind, UCL With: Sergey Bartunov, Adam Santoro, Jordan Guerguiev, Blake Richards, Luke Marris, Daniel Cownden, Colin Akerman, Douglas Tweed, Geoffrey Hinton The “credit assignment” problem The solution in artificial networks: backprop Credit assignment by backprop works well in practice and shows up in virtually all of the state-of-the-art supervised, unsupervised, and reinforcement learning algorithms. Why Isn’t Backprop “Biologically Plausible”? Why Isn’t Backprop “Biologically Plausible”? Neuroscience Evidence for Backprop in the Brain? A spectrum of credit assignment algorithms: A spectrum of credit assignment algorithms: A spectrum of credit assignment algorithms: How to convince a neuroscientist that the cortex is learning via [something like] backprop - To convince a machine learning researcher, an appeal to variance in gradient estimates might be enough. - But this is rarely enough to convince a neuroscientist. - So what lines of argument help? How to convince a neuroscientist that the cortex is learning via [something like] backprop - What do I mean by “something like backprop”?: - That learning is achieved across multiple layers by sending information from neurons closer to the output back to “earlier” layers to help compute their synaptic updates. How to convince a neuroscientist that the cortex is learning via [something like] backprop 1. Feedback connections in cortex are ubiquitous and modify the -
Arxiv:2002.06235V1
Semantic Relatedness and Taxonomic Word Embeddings Magdalena Kacmajor John D. Kelleher Innovation Exchange ADAPT Research Centre IBM Ireland Technological University Dublin [email protected] [email protected] Filip Klubickaˇ Alfredo Maldonado ADAPT Research Centre Underwriters Laboratories Technological University Dublin [email protected] [email protected] Abstract This paper1 connects a series of papers dealing with taxonomic word embeddings. It begins by noting that there are different types of semantic relatedness and that different lexical representa- tions encode different forms of relatedness. A particularly important distinction within semantic relatedness is that of thematic versus taxonomic relatedness. Next, we present a number of ex- periments that analyse taxonomic embeddings that have been trained on a synthetic corpus that has been generated via a random walk over a taxonomy. These experiments demonstrate how the properties of the synthetic corpus, such as the percentage of rare words, are affected by the shape of the knowledge graph the corpus is generated from. Finally, we explore the interactions between the relative sizes of natural and synthetic corpora on the performance of embeddings when taxonomic and thematic embeddings are combined. 1 Introduction Deep learning has revolutionised natural language processing over the last decade. A key enabler of deep learning for natural language processing has been the development of word embeddings. One reason for this is that deep learning intrinsically involves the use of neural network models and these models only work with numeric inputs. Consequently, applying deep learning to natural language processing first requires developing a numeric representation for words. Word embeddings provide a way of creating numeric representations that have proven to have a number of advantages over traditional numeric rep- resentations of language. -
Intelligent Cognitive Assistants (ICA) Workshop Summary and Research Needs Collaborative Machines to Enhance Human Capabilities
February 7, 2018 Intelligent Cognitive Assistants (ICA) Workshop Summary and Research Needs Collaborative Machines to Enhance Human Capabilities Abstract: The research needs and opportunities to create physico-cognitive systems which work collaboratively with people are presented. Workshop Dates and Venue: November 14-15, 2017, IBM Almaden Research Center, San Jose, CA Workshop Websites: https://www.src.org/program/ica https://www.nsf.gov/nano Oakley, John / SRC [email protected] [Feb 7, 2018] ICA-2: Intelligent Cognitive Assistants Workshop Summary and Research Needs Table of Contents Executive Summary .................................................................................................................... 2 Workshop Details ....................................................................................................................... 3 Organizing Committee ............................................................................................................ 3 Background ............................................................................................................................ 3 ICA-2 Workshop Outline ......................................................................................................... 6 Research Areas Presentations ................................................................................................. 7 Session 1: Cognitive Psychology ........................................................................................... 7 Session 2: Approaches to Artificial -
Text Mining Course for KNIME Analytics Platform
Text Mining Course for KNIME Analytics Platform KNIME AG Copyright © 2018 KNIME AG Table of Contents 1. The Open Analytics Platform 2. The Text Processing Extension 3. Importing Text 4. Enrichment 5. Preprocessing 6. Transformation 7. Classification 8. Visualization 9. Clustering 10. Supplementary Workflows Licensed under a Creative Commons Attribution- ® Copyright © 2018 KNIME AG 2 Noncommercial-Share Alike license 1 https://creativecommons.org/licenses/by-nc-sa/4.0/ Overview KNIME Analytics Platform Licensed under a Creative Commons Attribution- ® Copyright © 2018 KNIME AG 3 Noncommercial-Share Alike license 1 https://creativecommons.org/licenses/by-nc-sa/4.0/ What is KNIME Analytics Platform? • A tool for data analysis, manipulation, visualization, and reporting • Based on the graphical programming paradigm • Provides a diverse array of extensions: • Text Mining • Network Mining • Cheminformatics • Many integrations, such as Java, R, Python, Weka, H2O, etc. Licensed under a Creative Commons Attribution- ® Copyright © 2018 KNIME AG 4 Noncommercial-Share Alike license 2 https://creativecommons.org/licenses/by-nc-sa/4.0/ Visual KNIME Workflows NODES perform tasks on data Not Configured Configured Outputs Inputs Executed Status Error Nodes are combined to create WORKFLOWS Licensed under a Creative Commons Attribution- ® Copyright © 2018 KNIME AG 5 Noncommercial-Share Alike license 3 https://creativecommons.org/licenses/by-nc-sa/4.0/ Data Access • Databases • MySQL, MS SQL Server, PostgreSQL • any JDBC (Oracle, DB2, …) • Files • CSV, txt -
Combining Word Embeddings with Semantic Resources
AutoExtend: Combining Word Embeddings with Semantic Resources Sascha Rothe∗ LMU Munich Hinrich Schutze¨ ∗ LMU Munich We present AutoExtend, a system that combines word embeddings with semantic resources by learning embeddings for non-word objects like synsets and entities and learning word embeddings that incorporate the semantic information from the resource. The method is based on encoding and decoding the word embeddings and is flexible in that it can take any word embeddings as input and does not need an additional training corpus. The obtained embeddings live in the same vector space as the input word embeddings. A sparse tensor formalization guar- antees efficiency and parallelizability. We use WordNet, GermaNet, and Freebase as semantic resources. AutoExtend achieves state-of-the-art performance on Word-in-Context Similarity and Word Sense Disambiguation tasks. 1. Introduction Unsupervised methods for learning word embeddings are widely used in natural lan- guage processing (NLP). The only data these methods need as input are very large corpora. However, in addition to corpora, there are many other resources that are undoubtedly useful in NLP, including lexical resources like WordNet and Wiktionary and knowledge bases like Wikipedia and Freebase. We will simply refer to these as resources. In this article, we present AutoExtend, a method for enriching these valuable resources with embeddings for non-word objects they describe; for example, Auto- Extend enriches WordNet with embeddings for synsets. The word embeddings and the new non-word embeddings live in the same vector space. Many NLP applications benefit if non-word objects described by resources—such as synsets in WordNet—are also available as embeddings. -
Application of Machine Learning in Automatic Sentiment Recognition from Human Speech
Application of Machine Learning in Automatic Sentiment Recognition from Human Speech Zhang Liu Ng EYK Anglo-Chinese Junior College College of Engineering Singapore Nanyang Technological University (NTU) Singapore [email protected] Abstract— Opinions and sentiments are central to almost all human human activities and have a wide range of applications. As activities and have a wide range of applications. As many decision many decision makers turn to social media due to large makers turn to social media due to large volume of opinion data volume of opinion data available, efficient and accurate available, efficient and accurate sentiment analysis is necessary to sentiment analysis is necessary to extract those data. Business extract those data. Hence, text sentiment analysis has recently organisations in different sectors use social media to find out become a popular field and has attracted many researchers. However, consumer opinions to improve their products and services. extracting sentiments from audio speech remains a challenge. This project explores the possibility of applying supervised Machine Political party leaders need to know the current public Learning in recognising sentiments in English utterances on a sentiment to come up with campaign strategies. Government sentence level. In addition, the project also aims to examine the effect agencies also monitor citizens’ opinions on social media. of combining acoustic and linguistic features on classification Police agencies, for example, detect criminal intents and cyber accuracy. Six audio tracks are randomly selected to be training data threats by analysing sentiment valence in social media posts. from 40 YouTube videos (monologue) with strong presence of In addition, sentiment information can be used to make sentiments. -
Potential of Cognitive Computing and Cognitive Systems Ahmed K
Old Dominion University ODU Digital Commons Modeling, Simulation & Visualization Engineering Modeling, Simulation & Visualization Engineering Faculty Publications 2015 Potential of Cognitive Computing and Cognitive Systems Ahmed K. Noor Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/msve_fac_pubs Part of the Artificial Intelligence and Robotics Commons, Cognition and Perception Commons, and the Engineering Commons Repository Citation Noor, Ahmed K., "Potential of Cognitive Computing and Cognitive Systems" (2015). Modeling, Simulation & Visualization Engineering Faculty Publications. 18. https://digitalcommons.odu.edu/msve_fac_pubs/18 Original Publication Citation Noor, A. K. (2015). Potential of cognitive computing and cognitive systems. Open Engineering, 5(1), 75-88. doi:10.1515/ eng-2015-0008 This Article is brought to you for free and open access by the Modeling, Simulation & Visualization Engineering at ODU Digital Commons. It has been accepted for inclusion in Modeling, Simulation & Visualization Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. DE GRUYTER OPEN Open Eng. 2015; 5:75–88 Vision Article Open Access Ahmed K. Noor* Potential of Cognitive Computing and Cognitive Systems Abstract: Cognitive computing and cognitive technologies 1 Introduction are game changers for future engineering systems, as well as for engineering practice and training. They are ma- The history of computing can be divided into three eras jor drivers for knowledge automation work, and the cre- ([1, 2], and Figure 1). The first was the tabulating era, with ation of cognitive products with higher levels of intelli- the early 1900 calculators and tabulating machines made gence than current smart products. -
Word-Like Character N-Gram Embedding
Word-like character n-gram embedding Geewook Kim and Kazuki Fukui and Hidetoshi Shimodaira Department of Systems Science, Graduate School of Informatics, Kyoto University Mathematical Statistics Team, RIKEN Center for Advanced Intelligence Project fgeewook, [email protected], [email protected] Abstract Table 1: Top-10 2-grams in Sina Weibo and 4-grams in We propose a new word embedding method Japanese Twitter (Experiment 1). Words are indicated called word-like character n-gram embed- by boldface and space characters are marked by . ding, which learns distributed representations FNE WNE (Proposed) Chinese Japanese Chinese Japanese of words by embedding word-like character n- 1 ][ wwww 自己 フォロー grams. Our method is an extension of recently 2 。␣ !!!! 。␣ ありがと proposed segmentation-free word embedding, 3 !␣ ありがと ][ wwww 4 .. りがとう 一个 !!!! which directly embeds frequent character n- 5 ]␣ ございま 微博 めっちゃ grams from a raw corpus. However, its n-gram 6 。。 うござい 什么 んだけど vocabulary tends to contain too many non- 7 ,我 とうござ 可以 うござい 8 !! ざいます 没有 line word n-grams. We solved this problem by in- 9 ␣我 がとうご 吗? 2018 troducing an idea of expected word frequency. 10 了, ください 哈哈 じゃない Compared to the previously proposed meth- ods, our method can embed more words, along tion tools are used to determine word boundaries with the words that are not included in a given in the raw corpus. However, these segmenters re- basic word dictionary. Since our method does quire rich dictionaries for accurate segmentation, not rely on word segmentation with rich word which are expensive to prepare and not always dictionaries, it is especially effective when the available. -
Introduction to Gpus for Data Analytics Advances and Applications for Accelerated Computing
Compliments of Introduction to GPUs for Data Analytics Advances and Applications for Accelerated Computing Eric Mizell & Roger Biery Introduction to GPUs for Data Analytics Advances and Applications for Accelerated Computing Eric Mizell and Roger Biery Beijing Boston Farnham Sebastopol Tokyo Introduction to GPUs for Data Analytics by Eric Mizell and Roger Biery Copyright © 2017 Kinetica DB, Inc. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Editor: Shannon Cutt Interior Designer: David Futato Production Editor: Justin Billing Cover Designer: Karen Montgomery Copyeditor: Octal Publishing, Inc. Illustrator: Rebecca Demarest September 2017: First Edition Revision History for the First Edition 2017-08-29: First Release See http://oreilly.com/catalog/errata.csp?isbn=9781491998038 for release details. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Introduction to GPUs for Data Analytics, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. -
Text KM & Text Mining
Text KM & Text Mining An Introduction to Managing Knowledge in Unstructured Natural Language Documents Dekai Wu HKUST Human Language Technology Center Department of Computer Science and Engineering University of Science and Technology Hong Kong http://www.cs.ust.hk/~dekai © 2008 Dekai Wu Lecture Objectives Introduction to the concept of Text KM and Text Mining (TM) How to exploit knowledge encoded in text form How text mining is different from data mining Introduction to the various aspects of Natural Language Processing (NLP) Introduction to the different tools and methods available for TM HKUST Human Language Technology Center © 2008 Dekai Wu Textual Knowledge Management Text KM oversees the storage, capturing and sharing of knowledge encoded in unstructured natural language documents 80-90% of an organization’s explicit knowledge resides in plain English (Chinese, Japanese, Spanish, …) documents – not in structured relational databases! Case libraries are much more reasonably stored as natural language documents, than encoded into relational databases Most knowledge encoded as text will never pass through explicit KM processes (eg, email) HKUST Human Language Technology Center © 2008 Dekai Wu Text Mining Text Mining analyzes unstructured natural language documents to extract targeted types of knowledge Extracts knowledge that can then be inserted into databases, thereby facilitating structured data mining techniques Provides a more natural user interface for entering knowledge, for both employees and developers Reduces -
Learned in Speech Recognition: Contextual Acoustic Word Embeddings
LEARNED IN SPEECH RECOGNITION: CONTEXTUAL ACOUSTIC WORD EMBEDDINGS Shruti Palaskar∗, Vikas Raunak∗ and Florian Metze Carnegie Mellon University, Pittsburgh, PA, U.S.A. fspalaska j vraunak j fmetze [email protected] ABSTRACT model [10, 11, 12] trained for direct Acoustic-to-Word (A2W) speech recognition [13]. Using this model, we jointly learn to End-to-end acoustic-to-word speech recognition models have re- automatically segment and classify input speech into individual cently gained popularity because they are easy to train, scale well to words, hence getting rid of the problem of chunking or requiring large amounts of training data, and do not require a lexicon. In addi- pre-defined word boundaries. As our A2W model is trained at the tion, word models may also be easier to integrate with downstream utterance level, we show that we can not only learn acoustic word tasks such as spoken language understanding, because inference embeddings, but also learn them in the proper context of their con- (search) is much simplified compared to phoneme, character or any taining sentence. We also evaluate our contextual acoustic word other sort of sub-word units. In this paper, we describe methods embeddings on a spoken language understanding task, demonstrat- to construct contextual acoustic word embeddings directly from a ing that they can be useful in non-transcription downstream tasks. supervised sequence-to-sequence acoustic-to-word speech recog- Our main contributions in this paper are the following: nition model using the learned attention distribution. On a suite 1. We demonstrate the usability of attention not only for aligning of 16 standard sentence evaluation tasks, our embeddings show words to acoustic frames without any forced alignment but also for competitive performance against a word2vec model trained on the constructing Contextual Acoustic Word Embeddings (CAWE). -
Cognitive Computing Systems: Potential and Future
Cognitive Computing Systems: Potential and Future Venkat N Gudivada, Sharath Pankanti, Guna Seetharaman, and Yu Zhang March 2019 1 Characteristics of Cognitive Computing Systems Autonomous systems are self-contained and self-regulated entities which continually evolve them- selves in real-time in response to changes in their environment. Fundamental to this evolution is learning and development. Cognition is the basis for autonomous systems. Human cognition refers to those processes and systems that enable humans to perform both mundane and specialized tasks. Machine cognition refers to similar processes and systems that enable computers perform tasks at a level that rivals human performance. While human cognition employs biological and nat- ural means – brain and mind – for its realization, machine cognition views cognition as a type of computation. Cognitive Computing Systems are autonomous systems and are based on machine cognition. A cognitive system views the mind as a highly parallel information processor, uses vari- ous models for representing information, and employs algorithms for transforming and reasoning with the information. In contrast with conventional software systems, cognitive computing systems effectively deal with ambiguity, and conflicting and missing data. They fuse several sources of multi-modal data and incorporate context into computation. In making a decision or answering a query, they quantify uncertainty, generate multiple hypotheses and supporting evidence, and score hypotheses based on evidence. In other words, cognitive computing systems provide multiple ranked decisions and answers. These systems can elucidate reasoning underlying their decisions/answers. They are stateful, and understand various nuances of communication with humans. They are self-aware, and continuously learn, adapt, and evolve.