2020 Leroy P. Steele Prizes

Total Page:16

File Type:pdf, Size:1020Kb

2020 Leroy P. Steele Prizes FROM THE AMS SECRETARY 2020 Leroy P. Steele Prizes The 2020 Leroy P. Steele Prizes were presented at the 126th Annual Meeting of the AMS in Denver, Colorado, in Jan- uary 2020. The Steele Prize for Mathematical Exposition was awarded to Martin R. Bridson and André Haefliger; the Prize for Seminal Contribution to Research in Analysis/Probability was awarded to Craig Tracy and Harold Widom; and the Prize for Lifetime Achievement was awarded to Karen Uhlenbeck. Citation for Riemannian geometry and group theory, that the field of Mathematical Exposition: geometric group theory came into being. Much of the 1990s Martin R. Bridson was spent finding rigorous proofs of Gromov’s insights and André Haefliger and expanding upon them. Metric Spaces of Non-Positive The 2020 Steele Prize for Math- Curvature is the outcome of that decade of work, and has ematical Exposition is awarded been the standard textbook and reference work throughout to Martin R. Bridson and André the field in the two decades of dramatic progress since its Haefliger for the book Metric publication in 1999. Spaces of Non-Positive Curvature, A metric space of non-positive curvature is a geodesic published by Springer-Verlag metric space satisfying (local) CAT(0) condition, that every in 1999. pair of points on a geodesic triangle should be no further Metric Spaces of Non-Positive apart than the corresponding points on the “comparison Martin R. Bridson Curvature is the authoritative triangle” in the Euclidean plane. Examples of such spaces reference for a huge swath of include non-positively curved Riemannian manifolds, modern geometric group the- Bruhat–Tits buildings, and a wide range of polyhedral ory. It realizes Gromov’s vision complexes. of group theory studied via This book is the definitive text on these spaces and the geometry, has been the fun- groups associated with them. The theory is developed damental textbook for many carefully, in great generality. All the foundational theorems graduate students learning the are proved, and the important examples are covered. The subject, and paved the way for proofs are clear and comprehensive. The necessary density the developments of the subse- of such a work is offset by the inclusion of a large number quent decades. of exercises, making it invaluable both as a graduate text At the turn of the 20th cen- and as a reference for active researchers. tury, Max Dehn was interested in topological problems about Biographical Note: Martin R. Bridson André Haefliger closed surfaces. He translated Martin R. Bridson was born in the Isle of Man in 1964. these problems into algebraic He was an undergraduate at Hertford College Oxford and questions about the fundamental group and then solved received his PhD from Cornell University in 1991, advised them using the geometry of the action of the fundamental by Karen Vogtmann. He was an assistant professor at Princ- group on the universal cover. Subsequently, Dehn and eton until 1996, with extended leaves spent in Geneva and others used combinatorial properties of group presenta- Oxford. He was a tutorial fellow and professor of topology tions in place of geometric properties of spaces to develop at Oxford (Pembroke College), then professor of pure combinatorial group theory. It was only in the 1980s, mathematics at Imperial College London. Since 2007 he with Gromov’s seminal papers drawing parallels between has been the Whitehead Professor of Pure Mathematics at APRIL 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 563 FROM THE AMS SECRETARY the University of Oxford, where he served as head of the gave us an inspiring vision that melded the metric geometry Mathematical Institute 2015–18. He is now president of of the Russian school with numerous novel ideas that drew the Clay Mathematics Institute. on his unique insights into differential geometry, topol- Bridson’s research interests revolve around the interac- ogy, and group theory. Finitely generated groups, viewed tion of geometry, topology, and group theory. He has been as geometric objects, were at the heart of this vision, and awarded the Whitehead Prize of the London Mathematical the interaction of groups and geometry is correspondingly Society, the Forder Lectureship of the New Zealand Mathe- central to our book. matical Society, and a Royal Society Wolfson Research Merit It was a desire to extend Serre’s theory of graphs-of- Award. He gave an Invited Address to the Joint Mathematics groups to higher dimensions that led to our collaboration. Meetings in 2001 and was an Invited Speaker at the ICM André, who was developing a theory of complexes of in Madrid in 2006. He is a Fellow of the American Math- groups, visited John Stallings in Berkeley in 1989. Stall- ematical Society and was elected a Fellow of the Royal ings, working with Gersten on triangles of groups, was Society in 2016. developing similar ideas. Martin, struggling to understand Gromov’s essay “Hyperbolic Groups” while a graduate Biographical Note: André Haefliger student at Cornell, had resolved a challenge in the geo- André Haefliger was born in Nyon, Switzerland, in 1929. metric foundations of polyhedral geometry that had been He received his PhD from Paris-Sorbonne in 1958; his obstructing the work of both André and Gersten–Stallings. thesis director was Charles Ehresmann, and the president When André learned of this from Stallings, he wrote to of the jury was Henri Cartan. From 1961, he spent two Martin and subsequently arranged a position for him in years at the Institute for Advanced Study in Princeton. With Geneva. It was there in 1992–93 that we decided to write the help of George de Rham, he created the Department our book, naively assuming that we would finish during of Mathematics at the University of Geneva, where he our stay at a chalet in the Swiss mountains in July 1993, remained as Professeur until retiring in 1996. He traveled allowing time for long walks in the afternoons. Our sense widely, visiting universities across Europe, the Americas, of what the book should contain expanded in the years that the Soviet Union, Japan, China, and (many times) India. followed, but as the field expanded we had to accept that He was honored by a Doctorat Honoris Causa from ETH there were many things we could not cover. We sent the Zurich in 1992 and the University of Dijon in 1997. final manuscript to Springer on the first day of spring 1998. His research interests have ranged widely, including: We were at opposite ends of our careers when we em- diverse aspects of the theory of foliations; differentiable barked on this project, and we came with our own tastes, maps—jet spaces, immersions and embeddings, knotting but it was a joy to explore the mathematics together and for high-dimensional spheres; complex analytic structures; to argue until we agreed on how to present each idea. The orbifolds and complexes of groups. For the past fifteen years structure of our profession does not reward the effort of he has concentrated his efforts on the archives of Armand writing a monograph as readily as it rewards theorems Borel (now in Geneva) and René Thom. He also initiated presented in discrete papers published promptly. There the publication of the complete mathematical works of are good reasons for this, but the enduring value of a book René Thom, with critical notes and significant unpublished that gives students and colleagues access to a coherent body documents. of ideas is something to be treasured, and we applaud the American Mathematical Society for recognising that value Response from Martin R. Bridson through the Steele Prize. and André Haefliger We are honoured and delighted to receive the Steele Prize The Steele Prizes are awarded by the AMS Council acting for Mathematical Exposition. We are particularly pleased on the recommendation of a selection committee. The that the Prize Committee commented on the value that members of the Steele Prize Subcommittee for Mathemat- students have found in our book; to see it used widely ical Exposition were: as a textbook has been immensely gratifying. It has also • Charles Fefferman • Alice Guionnet been rewarding to see it serve as a reference for the many • Eric Friedlander • Michael Jordan colleagues who have advanced geometric group theory so (Chair) • Dusa McDuff spectacularly over the past twenty years. • Mark Green • Victor Reiner We wrote, “The purpose of this book is to describe the • Benedict Gross • Thomas Scanlon global properties of complete simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov Citation for Seminal Contribution to Research: and to examine the structure of groups that act on such Craig Tracy and Harold Widom spaces by isometries.” Misha Gromov brought many ideas The 2020 Steele Prize for a Seminal Contribution to Re- from the Alexandrov school to prominence in the West, and search in Analysis/Probability Theory is awarded to Craig his contribution goes far beyond an act of transmission: he Tracy and Harold Widom for the paper “Level-Spacing 564 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 67, NUMBER 4 FROM THE AMS SECRETARY Distributions and the Airy Biographical Sketch: Craig Tracy Kernel,” published in 1994 in Craig Tracy was born in England on September 9, 1945, the Communications in Mathemati- son of Eileen Arnold, a British subject, and Robert Tracy, cal Physics. an American serving in the U.S. Army. After immigrating to In this work, Tracy and the United States as an infant, Tracy grew up in Missouri, Widom found the exact as- where he attended the University of Missouri at Colum- ymptotics of the nth largest bia, graduating in 1967 as an O. M. Stewart Fellow with a BS degree in physics.
Recommended publications
  • WHAT IS Outer Space?
    WHAT IS Outer Space? Karen Vogtmann To investigate the properties of a group G, it is with a metric of constant negative curvature, and often useful to realize G as a group of symmetries g : S ! X is a homeomorphism, called the mark- of some geometric object. For example, the clas- ing, which is well-defined up to isotopy. From this sical modular group P SL(2; Z) can be thought of point of view, the mapping class group (which as a group of isometries of the upper half-plane can be identified with Out(π1(S))) acts on (X; g) f(x; y) 2 R2j y > 0g equipped with the hyper- by composing the marking with a homeomor- bolic metric ds2 = (dx2 + dy2)=y2. The study of phism of S { the hyperbolic metric on X does P SL(2; Z) and its subgroups via this action has not change. By deforming the metric on X, on occupied legions of mathematicians for well over the other hand, we obtain a neighborhood of the a century. point (X; g) in Teichm¨uller space. We are interested here in the (outer) automor- phism group of a finitely-generated free group. u v Although free groups are the simplest and most fundamental class of infinite groups, their auto- u v u v u u morphism groups are remarkably complex, and v x w v many natural questions about them remain unan- w w swered. We will describe a geometric object On known as Outer space , which was introduced in w w u v [2] to study Out(Fn).
    [Show full text]
  • Automorphism Groups of Free Groups, Surface Groups and Free Abelian Groups
    Automorphism groups of free groups, surface groups and free abelian groups Martin R. Bridson and Karen Vogtmann The group of 2 × 2 matrices with integer entries and determinant ±1 can be identified either with the group of outer automorphisms of a rank two free group or with the group of isotopy classes of homeomorphisms of a 2-dimensional torus. Thus this group is the beginning of three natural sequences of groups, namely the general linear groups GL(n, Z), the groups Out(Fn) of outer automorphisms of free groups of rank n ≥ 2, and the map- ± ping class groups Mod (Sg) of orientable surfaces of genus g ≥ 1. Much of the work on mapping class groups and automorphisms of free groups is motivated by the idea that these sequences of groups are strongly analogous, and should have many properties in common. This program is occasionally derailed by uncooperative facts but has in general proved to be a success- ful strategy, leading to fundamental discoveries about the structure of these groups. In this article we will highlight a few of the most striking similar- ities and differences between these series of groups and present some open problems motivated by this philosophy. ± Similarities among the groups Out(Fn), GL(n, Z) and Mod (Sg) begin with the fact that these are the outer automorphism groups of the most prim- itive types of torsion-free discrete groups, namely free groups, free abelian groups and the fundamental groups of closed orientable surfaces π1Sg. In the ± case of Out(Fn) and GL(n, Z) this is obvious, in the case of Mod (Sg) it is a classical theorem of Nielsen.
    [Show full text]
  • THE SYMMETRIES of OUTER SPACE Martin R. Bridson* and Karen Vogtmann**
    THE SYMMETRIES OF OUTER SPACE Martin R. Bridson* and Karen Vogtmann** ABSTRACT. For n 3, the natural map Out(Fn) → Aut(Kn) from the outer automorphism group of the free group of rank n to the group of simplicial auto- morphisms of the spine of outer space is an isomorphism. §1. Introduction If a eld F has no non-trivial automorphisms, then the fundamental theorem of projective geometry states that the group of incidence-preserving bijections of the projective space of dimension n over F is precisely PGL(n, F ). In the early nineteen seventies Jacques Tits proved a far-reaching generalization of this theorem: under suitable hypotheses, the full group of simplicial automorphisms of the spherical building associated to an algebraic group is equal to the algebraic group — see [T, p.VIII]. Tits’s theorem implies strong rigidity results for lattices in higher-rank — see [M]. There is a well-developed analogy between arithmetic groups on the one hand and mapping class groups and (outer) automorphism groups of free groups on the other. In this analogy, the role played by the symmetric space in the classical setting is played by the Teichmuller space in the case of case of mapping class groups and by Culler and Vogtmann’s outer space in the case of Out(Fn). Royden’s Theorem (see [R] and [EK]) states that the full isometry group of the Teichmuller space associated to a compact surface of genus at least two (with the Teichmuller metric) is the mapping class group of the surface. An elegant proof of Royden’s theorem was given recently by N.
    [Show full text]
  • The Cohomology of Automorphism Groups of Free Groups
    The cohomology of automorphism groups of free groups Karen Vogtmann∗ Abstract. There are intriguing analogies between automorphism groups of finitely gen- erated free groups and mapping class groups of surfaces on the one hand, and arithmetic groups such as GL(n, Z) on the other. We explore aspects of these analogies, focusing on cohomological properties. Each cohomological feature is studied with the aid of topolog- ical and geometric constructions closely related to the groups. These constructions often reveal unexpected connections with other areas of mathematics. Mathematics Subject Classification (2000). Primary 20F65; Secondary, 20F28. Keywords. Automorphism groups of free groups, Outer space, group cohomology. 1. Introduction In the 1920s and 30s Jakob Nielsen, J. H. C. Whitehead and Wilhelm Magnus in- vented many beautiful combinatorial and topological techniques in their efforts to understand groups of automorphisms of finitely-generated free groups, a tradition which was supplemented by new ideas of J. Stallings in the 1970s and early 1980s. Over the last 20 years mathematicians have been combining these ideas with others motivated by both the theory of arithmetic groups and that of surface mapping class groups. The result has been a surge of activity which has greatly expanded our understanding of these groups and of their relation to many areas of mathe- matics, from number theory to homotopy theory, Lie algebras to bio-mathematics, mathematical physics to low-dimensional topology and geometric group theory. In this article I will focus on progress which has been made in determining cohomological properties of automorphism groups of free groups, and try to in- dicate how this work is connected to some of the areas mentioned above.
    [Show full text]
  • Perspectives in Lie Theory Program of Activities
    INdAM Intensive research period Perspectives in Lie Theory Program of activities Session 3: Algebraic topology, geometric and combinatorial group theory Period: February 8 { February 28, 2015 All talks will be held in Aula Dini, Palazzo del Castelletto. Monday, February 9, 2015 • 10:00- 10:40, registration • 10:40, coffee break. • 11:10- 12:50, Vic Reiner, Reflection groups and finite general linear groups, lecture 1. • 15:00- 16:00, Michael Falk, Rigidity of arrangement complements • 16:00, coffee break. • 16:30- 17:30, Max Wakefield, Kazhdan-Lusztig polynomial of a matroid • 17:30- 18:30, Angela Carnevale, Odd length: proof of two conjectures and properties (young semi- nar). • 18:45- 20:30, Welcome drink (Sala del Gran Priore, Palazzo della Carovana, Piazza dei Cavalieri) Tuesday, February 10, 2015 • 9:50-10:40, Ulrike Tillmann, Homology of mapping class groups and diffeomorphism groups, lecture 1. • 10:40, coffee break. • 11:10- 12:50, Karen Vogtmann, On the cohomology of automorphism groups of free groups, lecture 1. • 15:00- 16:00, Tony Bahri,New approaches to the cohomology of polyhedral products • 16:00, coffee break. • 16:30- 17:30, Alexandru Dimca, On the fundamental group of algebraic varieties • 17:30- 18:30, Nancy Abdallah, Cohomology of Algebraic Plane Curves (young seminar). Wednesday, February 11, 2015 • 9:00- 10:40, Vic Reiner, Reflection groups and finite general linear groups, lecture 2. • 10:40, coffee break. • 11:10- 12:50, Ulrike Tillmann, Homology of mapping class groups and diffeomorphism groups, lec- ture 2 • 15:00- 16:00, Karola Meszaros, Realizing subword complexes via triangulations of root polytopes • 16:00, coffee break.
    [Show full text]
  • The Legacy of Norbert Wiener: a Centennial Symposium
    http://dx.doi.org/10.1090/pspum/060 Selected Titles in This Series 60 David Jerison, I. M. Singer, and Daniel W. Stroock, Editors, The legacy of Norbert Wiener: A centennial symposium (Massachusetts Institute of Technology, Cambridge, October 1994) 59 William Arveson, Thomas Branson, and Irving Segal, Editors, Quantization, nonlinear partial differential equations, and operator algebra (Massachusetts Institute of Technology, Cambridge, June 1994) 58 Bill Jacob and Alex Rosenberg, Editors, K-theory and algebraic geometry: Connections with quadratic forms and division algebras (University of California, Santa Barbara, July 1992) 57 Michael C. Cranston and Mark A. Pinsky, Editors, Stochastic analysis (Cornell University, Ithaca, July 1993) 56 William J. Haboush and Brian J. Parshall, Editors, Algebraic groups and their generalizations (Pennsylvania State University, University Park, July 1991) 55 Uwe Jannsen, Steven L. Kleiman, and Jean-Pierre Serre, Editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, Editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, Editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert E. Greene, and Steven G. Krantz, Editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, Editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, Editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, Editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R.
    [Show full text]
  • Karen Vogtmann
    CURRICULUM VITAE -KAREN VOGTMANN Mathematics Institute Office: C2.05 Zeeman Bldg. Phone: +44 (0) 2476 532739 University of Warwick Email: [email protected] Coventry CV4 7AL PRINCIPAL FIELDS OF INTEREST Geometric group theory, Low-dimensional topology, Cohomology of groups EDUCATION B.A. University of California, Berkeley 1971 Ph.D. University of California, Berkeley 1977 ACADEMIC POSITIONS University of Warwick, Professor, 9/13 to present Cornell University – Goldwin Smith Professor of Mathematics Emeritus, 7/15 to present – Goldwin Smith Professor of Mathematics, 7/11 to 7/15 – Professor, 1/94 to 7/11 – Associate Professor, 7/87 to 12/93 – Assistant Professor, 7/85 to 6/87 – Visiting Assistant Professor, 9/84 to 6/85 Columbia University, Assistant Professor, 7/79 to 6/86 Brandeis University, Visiting Assistant Professor, 9/78 to 12/78 University of Michigan, Visiting Assistant Professor, 9/77 to 6/78 and 1/79 to 6/79 RESEARCH AND SABBATICAL POSITIONS MSRI, Berkeley, CA 8/19 to 11/19 Newton Institute, Cambridge, Mass, 3/17 to 5/17 MSRI, Berkeley, CA 8/16 to 12/16 Research Professor, ICERM, Providence, RI, 9/13 to 12/13 Freie Universitat¨ Berlin, Berlin, Germany, 6/12 Mittag-Leffler Institute, Stockholm, Sweden, 3/12 to 5/12 Visiting Researcher, Oxford University, Oxford, England, 2/12 Professeur invite, Marseilles, France, 5/11 Hausdorff Institute for Mathematics, 9/09 to 12/09 and 5/10-8/10 Mathematical Sciences Research Institute, Berkeley, CA, 8/07-12/07 I.H.E.S., Bures-sur-Yvette, France 3/04 Professeur Invite,´ Marseilles, France, 3/00 Mathematical Sciences Research Institute, Berkeley, 1/95 to 7/95 I.H.E.S., Bures-sur-Yvette, France, 1/93-8/93 Chercheur, C.N.R.S., E.N.S.
    [Show full text]
  • Prizes and Awards
    DENVER • JAN 15–18, 2020 January 2020 Prizes and Awards 4:25 PM, Thursday, January 16, 2020 PROGRAM OPENING REMARKS Michael Dorff, Mathematical Association of America AWARD FOR DISTINGUISHED PUBLIC SERVICE American Mathematical Society BÔCHER MEMORIAL PRIZE American Mathematical Society CHEVALLEY PRIZE IN LIE THEORY American Mathematical Society FRANK NELSON COLE PRIZE IN NUMBER THEORY American Mathematical Society LEONARD EISENBUD PRIZE FOR MATHEMATICS AND PHYSICS American Mathematical Society LEVI L. CONANT PRIZE American Mathematical Society JOSEPH L. DOOB PRIZE American Mathematical Society LEROY P. S TEELE PRIZE FOR MATHEMATICAL EXPOSITION American Mathematical Society LEROY P. S TEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH American Mathematical Society LEROY P. S TEELE PRIZE FOR LIFETIME ACHIEVEMENT American Mathematical Society LOUISE HAY AWARD FOR CONTRIBUTION TO MATHEMATICS EDUCATION Association for Women in Mathematics M. GWENETH HUMPHREYS AWARD FOR MENTORSHIP OF UNDERGRADUATE WOMEN IN MATHEMATICS Association for Women in Mathematics MICROSOFT RESEARCH PRIZE IN ALGEBRA AND NUMBER THEORY Association for Women in Mathematics SADOSKY RESEARCH PRIZE IN ANALYSIS Association for Women in Mathematics FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY AN UNDERGRADUATE STUDENT American Mathematical Society Mathematical Association of America Society for Industrial and Applied Mathematics COMMUNICATIONS AWARD Joint Policy Board for Mathematics CHAUVENET PRIZE Mathematical Association of America DAVID P. R OBBINS PRIZE Mathematical Association of America EULER BOOK PRIZE Mathematical Association of America DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY TEACHING OF MATHEMATICS Mathematical Association of America YUEH-GIN GUNG AND DR.CHARLES Y. HU AWARD FOR DISTINGUISHED SERVICE TO MATHEMATICS Mathematical Association of America CLOSING REMARKS Jill C.
    [Show full text]
  • Combinatorial and Geometric Group Theory
    Combinatorial and Geometric Group Theory Vanderbilt University Nashville, TN, USA May 5–10, 2006 Contents V. A. Artamonov . 1 Goulnara N. Arzhantseva . 1 Varujan Atabekian . 2 Yuri Bahturin . 2 Angela Barnhill . 2 Gilbert Baumslag . 3 Jason Behrstock . 3 Igor Belegradek . 3 Collin Bleak . 4 Alexander Borisov . 4 Lewis Bowen . 5 Nikolay Brodskiy . 5 Kai-Uwe Bux . 5 Ruth Charney . 6 Yves de Cornulier . 7 Maciej Czarnecki . 7 Peter John Davidson . 7 Karel Dekimpe . 8 Galina Deryabina . 8 Volker Diekert . 9 Alexander Dranishnikov . 9 Mikhail Ershov . 9 Daniel Farley . 10 Alexander Fel’shtyn . 10 Stefan Forcey . 11 Max Forester . 11 Koji Fujiwara . 12 Rostislav Grigorchuk . 12 Victor Guba . 12 Dan Guralnik . 13 Jose Higes . 13 Sergei Ivanov . 14 Arye Juhasz . 14 Michael Kapovich . 14 Ilya Kazachkov . 15 i Olga Kharlampovich . 15 Anton Klyachko . 15 Alexei Krasilnikov . 16 Leonid Kurdachenko . 16 Yuri Kuzmin . 17 Namhee Kwon . 17 Yuriy Leonov . 18 Rena Levitt . 19 Artem Lopatin . 19 Alex Lubotzky . 19 Alex Lubotzky . 20 Olga Macedonska . 20 Sergey Maksymenko . 20 Keivan Mallahi-Karai . 21 Jason Manning . 21 Luda Markus-Epstein . 21 John Meakin . 22 Alexei Miasnikov . 22 Michael Mihalik . 22 Vahagn H. Mikaelian . 23 Ashot Minasyan . 23 Igor Mineyev . 24 Atish Mitra . 24 Nicolas Monod . 24 Alexey Muranov . 25 Bernhard M¨uhlherr . 25 Volodymyr Nekrashevych . 25 Graham Niblo . 26 Alexander Olshanskii . 26 Denis Osin . 27 Panos Papasoglu . 27 Alexandra Pettet . 27 Boris Plotkin . 28 Eugene Plotkin . 28 John Ratcliffe . 29 Vladimir Remeslennikov . 29 Tim Riley . 29 Nikolay Romanovskiy . 30 Lucas Sabalka . 30 Mark Sapir . 31 Paul E. Schupp . 31 Denis Serbin . 32 Lev Shneerson .
    [Show full text]
  • January 2007 Prizes and Awards
    January 2007 Prizes and Awards 4:25 P.M., Saturday, January 6, 2007 MATHEMATICAL ASSOCIATION OF AMERICA DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY TEACHING OF MATHEMATICS In 1991, the Mathematical Association of America instituted the Deborah and Franklin Tepper Haimo Awards for Distinguished College or University Teaching of Mathematics in order to honor college or university teachers who have been widely recognized as extraordinarily successful and whose teaching effectiveness has been shown to have had influence beyond their own institutions. Deborah Tepper Haimo was president of the Association, 1991–1992. Citation Jennifer Quinn Jennifer Quinn has a contagious enthusiasm that draws students to mathematics. The joy she takes in all things mathematical is reflected in her classes, her presentations, her publications, her videos and her on-line materials. Her class assignments often include nonstandard activities, such as creating time line entries for historic math events, or acting out scenes from the book Proofs and Refutations. One student created a children’s story about prime numbers and another produced a video documentary about students’ perceptions of math. A student who had her for six classes says, “I hope to become a teacher after finishing my master’s degree and I would be thrilled if I were able to come anywhere close to being as great a teacher as she is.” Jenny developed a variety of courses at Occidental College. Working with members of the physics department and funded by an NSF grant, she helped develop a combined yearlong course in calculus and mechanics. She also developed a course on “Mathematics as a Liberal Art” which included computer discussions, writing assignments, and other means to draw technophobes into the course.
    [Show full text]
  • Colloquium Karen Vogtmann, Cornell Maps Into and out of Automorphism Groups of Free Groups
    COLLOQUIUM KAREN VOGTMANN, CORNELL MAPS INTO AND OUT OF AUTOMORPHISM GROUPS OF FREE GROUPS GABRIEL C. DRUMMOND-COLE It’s always a pleasure to come to Chicago. I’m happy to be here. I found this picture on your webpage [laughter.] There are strong analogies between outer automorphism groups of free groups and mapping class groups and lattices. I’m going to ignore mapping class groups, although many of the things I’m going to say have to do with those too. Here’s an Escher print of a lattice, but I’m thinking of irreducible lattices in higher rank semisim- ple Lie groups. It’s a discrete subgroup Λ of G so that G/Λ has finite volume. The classical example is Λ = SL(n, Z) ⊂ SL(n, R) which has a finite volume noncompact quotient. Another n n example is Λ = π1(M3) for a hyperbolic manifold. A couple of nonexamples are Z in R , which is reducible, and also not Γ ⊂ P SL(2, R) which are only rank one, so for me n is higher. The other thing is automorphisms of free groups. So for example ρij takes xi to xixj and pre- serves the other generators. There’s also a left multiplication λij which does the same kind of thing, and the permutation eij. Nielsen proved that these three types generate the auto- morphisms. This was in the 1920s and 1930s. Other people interested in this were J. H. C. Whitehead and W. Magnus. They used algebraic and topological methods, but later progress was slow.
    [Show full text]
  • Through Completely Split Train Tracks
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Utah: J. Willard Marriott Digital Library THE GEOMETRY OF Out(FN) THROUGH COMPLETELY SPLIT TRAIN TRACKS by Derrick Wigglesworth A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics The University of Utah May 2018 Copyright c Derrick Wigglesworth 2018 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Derrick Wigglesworth has been approved by the following supervisory committee members: Mladen Bestvina , Chair(s) 21 Feb 2018 Date Approved Kenneth Bromberg , Member 21 Feb 2018 Date Approved Jonathan M. Chaika , Member 21 Feb 2018 Date Approved Mark Feighn , Member 20 Feb 2018 Date Approved Kevin Wortman , Member 21 Feb 2018 Date Approved by Davar Khoshnevisan , Chair/Dean of the Department/College/School of Mathematics and by David B. Kieda , Dean of The Graduate School. ABSTRACT We prove that abelian subgroups of the outer automorphism group of a free group are quasi-isometrically embedded. Our proof uses recent developments in the theory of train track maps by Feighn-Handel. As an application, we prove the rank conjecture for Out(Fn). Then, in joint work with Radhika Gupta, we show that an outer automorphism acts loxodromically on the cyclic splitting complex if and only if it has a filling lamination and no generic leaf of the lamination is carried by a vertex group of a cyclic splitting. This is a direct analog for the cyclic splitting complex of Handel and Mosher’s theorem on loxodromics for the free splitting complex.
    [Show full text]