bioRxiv preprint doi: https://doi.org/10.1101/786301; this version posted September 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Research Article The Association between SLC25A15 Gene Polymorphisms and Hyperornithinemia‐hyperammonemia‐homocitrullinuria Syndrome: Using In Silico Analysis Nuha A. Mahmoud1*, Dina T. Ahmed2*, Zainab O. Mohammed3, Fatima A. Altyeb2, Mujahed I. Mustafa2, Mohamed A. Hassan2,4 1- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan. 2- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan. 3- Department of Hematology, Ribat University Hospital, Khartoum, Sudan. 4- Department of Bioinformatics, DETAGEN Genetics Diagnostic Center, Kayseri, Turkey. *Both authors contributed equally to this manuscript. Corresponding Author: Nuha A. Mahmoud:
[email protected] Background: Hyperornithinemia‐hyperammonemia‐homocitrullinuria (HHH) syndrome is an autosomal recessive inborn error of the urea cycle. It is caused by mutations in the SLC25A15 gene that codes the mitochondrial ornithine transporter. The aim of this study is to detect and identify the pathogenic SNPs in SLC25A15 gene through a combination set of bioinformatics tools and their effect on the structure and function of the protein. Methods: The deleterious SNPs in SLC25A15 are detected by various bioinformatics tools, with addition to identifying their effects on the structure and function of this gene. Results: 20 deleterious SNPs out 287of were found to have their own damaging effects on the structure and function of the SLC25A15 gene.