Identification of Functional Marker Proteins in the Mammalian Growth Cone

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Functional Marker Proteins in the Mammalian Growth Cone Identification of functional marker proteins in the mammalian growth cone Motohiro Nozumia,b, Tetsuya Toganoa,c, Kazuko Takahashi-Nikia, Jia Lua,c, Atsuko Hondaa,b, Masato Taokad,e, Takashi Shinkawad,e, Hisashi Kogaf,g, Kosei Takeuchia,b, Toshiaki Isobed,e, and Michihiro Igarashia,b,1 Divisions of aMolecular Cell Biology and cOphthalmology, Graduate School of Medical and Dental Sciences, and bTransdisciplinary Research Program, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata, Niigata 951-8510, Japan; dDepartment of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; eCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan; and fChiba Industry Advancement Center and gCollaboration of Regional Entities for the Advancement of Technological Excellence Program, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan Edited by Lynn T. Landmesser, Case Western Reserve University, Cleveland, OH, and approved August 24, 2009 (received for review April 18, 2009) Identification of proteins in the mammalian growth cone has the mammalian growth cone functions, in particular interactions or potential to advance our understanding of this critical regulator of relationships among signaling pathways, at least in part because of neuronal growth and formation of neural circuit; however, to date, an insufficient understanding of what key molecules are important only one growth cone marker protein, GAP-43, has been reported. for function (1, 2). Here, we successfully used a proteomic approach to identify 945 Indeed, even what proteins might be present, i.e., molecular proteins present in developing rat forebrain growth cones, including markers of the growth cone, is a relatively unexplored territory, highly abundant, membrane-associated and actin-associated pro- particularly as compared with our understanding of synaptic mo- teins. Almost 100 of the proteins appear to be highly enriched in the lecular marker proteins. In the case of adult synapses, a large growth cone, as determined by quantitative immunostaining, and for number of marker proteins localized to various sublocations in the 17 proteins, the results of RNAi suggest a role in axon growth. Most synapse are known (5, 6). These include proteins localized to of the proteins we identified have not previously been implicated in synaptic vesicles, presynaptic and postsynaptic membranes, active axon growth and thus their identification presents a significant step zones, and postsynaptic density (5, 6). forward, providing marker proteins and candidate neuronal growth- Without a doubt, identification of synaptic marker proteins has associated proteins. markedly enriched our knowledge of the molecular machinery GAP-43 ͉ proteomics ͉ RNAi ͉ neuronal growth-associated proteins ͉ underpinning synaptic structures and functions (5, 6). This stands axon guidance in contrast to the very small amount of marker protein information available for the growth cone. Indeed, GAP-43 (growth-associated protein 43-kDa; neuromodulin) (7) is the only previously identified euronal growth cones execute important steps in neural wiring, functional molecular marker of growth cones (ideally, a ‘‘functional including axonal growth and pathfinding, and accurate synap- N molecular marker’’ would be a protein that is both highly concen- togenesis (1, 2). Whether or not an injured axon in the adult neuron regenerates or degenerates depends on surrounding factors that trated in the growth cone and involved in axon growth). GAP-43 is either maintain or inhibit formation of growth cone-like structures, concentrated in the growth cone, highly expressed, transported consistent with a critical role for growth cones in neural plasticity when a damaged axon can regrow, and involved in sprouting (7). and repair of the adult brain (3, 4). It follows, then, that identifying the Although it is concentrated in the growth cone, GAP-43 is also molecular basis of growth cone behavior will be critical to understand- detectable in the axon (7). Given the severely limited amount of ing the cellular mechanisms of higher brain functions. A significant information about functional markers concentrated in or localized barrier to this understanding, however, is that little is known about to growth cones, it follows that identification of putative novel the molecular makeup of the mammalian growth cone. functional molecular markers of the mammalian growth cone Classical genetic approaches to identifying key players in brain would be extremely valuable to further study. function have been informative in model systems such as Caeno- To help gain a systemwide understanding of the molecular rhabditis elegans and Drosophila. For example, identification of components of growth cones and identify novel molecular marker mutations in specific C. elegans and Drosophila genes contributed candidates, we introduced proteome-scale approaches that have greatly to the discovery and functional characterization of axon been used successfully to identify large numbers of proteins present guidance molecules in the mammalian brain, such as netrin and in other specific cells or tissues, thus contributing to a more global semaphorins (1, 2). But these are not the only useful tools with understanding of the functions of those cells or tissues (8–11). We which to dissect growth cone functions, and they have significant succeeded in identifying 945 species of proteins in growth cone limitations in terms of their ability to further our understanding of particle (GCP) and/or a growth cone membrane membrane (GCM) the complete picture of the molecular machinery that controls (12–14). By combining the results of immunolocalization and RNAi mammalian growth cones (1, 2). Among these limitations are that studies with proteomics, we provide evidence that 17 of the proteins similar studies are not feasible in mammals and mammalian growth we identified are highly concentrated in the growth cone area and cone functions are thought to be much more complicated than growth regulate axonal growth, concluding that they are unique functional cone functions in C. elegans and Drosophila. Additionally, the molecular molecular markers of the growth cone. redundancy involved in growth cone functions in the mammalian CNS is likely to be much larger than in model organisms. Despite the knowledge gap, however, we know of no previous Author contributions: K.T., T.I., and M.I. designed research; M.N., T.T., K.T.-N., J.L., A.H., report that applies a systematic approach to identification of M.T., and T.S. performed research; H.K. contributed new reagents/analytic tools; M.N., mammalian growth cone proteins. However, cell biological studies M.T., T.I., and M.I. analyzed data; and M.I. wrote the paper. combined with pharmacological tools to detect second messengers The authors declare no conflict of interest. ϩ (Ca2 or cyclic nucleotides) or the cytoskeleton (i.e., F-actin or This article is a PNAS Direct Submission. microtubules) have revealed some of the signaling pathways in- 1To whom correspondence should be addressed. E-mail: [email protected]. volved in control of mammalian growth cone behavior or guidance. This article contains supporting information online at www.pnas.org/cgi/content/full/ Nonetheless, we are far from having a complete understanding of 0904092106/DCSupplemental. 17210–17215 ͉ PNAS ͉ October 6, 2009 ͉ vol. 106 ͉ no. 40 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0904092106 Downloaded by guest on September 26, 2021 Fig. 1. Proteomic analysis of GCPs and adult A B GCP(629) GCM (592) synaptosomes. (A) Electron micrograph of GCPs. The GCP fraction was prepared by using the method described by Gordon-Weeks (14) (see SI 353 276 316 Text). The criterion for a GCP was a particle with a diameter of Ϸ1–2 ␮m and the presence of small clear vesicles. (Scale bar: 10 ␮m.) (B) GCP proteins C and proteins found in a membrane subfraction of GCP (GCM). In total, 629 GCP and 592 GCM pro- teins were identified, with 276 proteins common to both. Note that 316 proteins were identified only in the GCM subfraction. (C) Comparison of the GCP/GCM proteome with the proteome of adult synaptosomes. A total of 1,407 synaptoso- Number of proteins (%) D 0 5 10 15 20 25 30 mal proteins were identified, for about twice as many as were identified in GCP or GCM. (D) Cat- Metabolic enzyme 23.0 Cytoskeletal 14.8 egorization of GCP, GCM, and synaptosomal pro- Signaling 7.3 teins. Categories are color-coded as follows: met- GTP-bindingGTP binding 10.1 Ion transport/Channel 6.9 E abolic enzymes, violet; cytoskeletal proteins, Membrane traffic 5.8 60 navy; signaling (except GTP-binding or phosphor- Kinase/Phosphatase 4.4 50 GCP > GCM Receptor 1.0 ylation), blue; proteins involved in guanine nucle- 40 GCP Chaperone 5.4 otide cycling (including GTP-binding proteins), Proteasome/Ubiquitination 3.8 GCP 30 GCM Cell adhesion 2.6 20 Synaptosome cyan; ion transport/channels, green; membrane Ribosomal 4.6 10 traffic, lime; kinases or phosphatases, yellow; re- Protein translation 1.5 of peptides Number Miscellaneous 8.8 0 ceptors, orange; chaperone, brown; proteasome/ ubiquitination-related proteins, maroon; cell ad- Metabolic enzyme 12.6 hesion proteins, red; ribosomal, magenta; Cytoskeletal 9.4 Signaling 7.9 proteins involved in translation, olive; miscella- GTP-binding 11.2 neous proteins (including organelle-specific or Ion transport/Channel 10.3 Membrane traffic 8.7 60 undefined), gray. Note that the ratio of cell adhe- Kinase/Phosphatase 3.5 50 GCP < GCM sion molecules, receptors, and transporters/ Receptor 8.7 40 Chaperone 4.0 channels is higher in GCM than in GCP, consistent 30 Proteasome/Ubiquitination 0.9 GCM with enrichment of membrane components in Cell adhesion 6.5 of ber peptides 20 m GCM. See Table S1, Table S2, and Table S3 for a Ribosomal 4.5 10 Protein translation 0.9 Nu detailed report. (E) The major proteins of GCP or Miscellaneous 10.9 0 GCM as compared with synaptosomal proteins as Metabolic enzyme 24.9 indicated by the number of identified peptides.
Recommended publications
  • The Therapeutic Effects of Rho-ROCK Inhibitors on CNS Disorders
    REVIEW The therapeutic effects of Rho-ROCK inhibitors on CNS disorders Takekazu Kubo1 Abstract: Rho-kinase (ROCK) is a serine/threonine kinase and one of the major downstream Atsushi Yamaguchi1 effectors of the small GTPase Rho. The Rho-ROCK pathway is involved in many aspects of Nobuyoshi Iwata2 neuronal functions including neurite outgrowth and retraction. The Rho-ROCK pathway becomes Toshihide Yamashita1,3 an attractive target for the development of drugs for treating central nervous system (CNS) dis- orders, since it has been recently revealed that this pathway is closely related to the pathogenesis 1Department of Neurobiology, Graduate School of Medicine, Chiba of several CNS disorders such as spinal cord injuries, stroke, and Alzheimer’s disease (AD). In University, 1-8-1 Inohana, Chuo-ku, the adult CNS, injured axons regenerate poorly due to the presence of myelin-associated axonal 2 Chiba 260-8670, Japan; Information growth inhibitors such as myelin-associated glycoprotein (MAG), Nogo, oligodendrocyte- Institute for Medical Research Ltd.; 3Department of Molecular myelin glycoprotein (OMgp), and the recently identifi ed repulsive guidance molecule (RGM). Neuroscience, Graduate School The effects of these inhibitors are reversed by blockade of the Rho-ROCK pathway in vitro, of Medicine, Osaka University 2-2 and the inhibition of this pathway promotes axonal regeneration and functional recovery in the Yamadaoka, Suita, Osaka 565-0871, Japan injured CNS in vivo. In addition, the therapeutic effects of the Rho-ROCK inhibitors have been demonstrated in animal models of stroke. In this review, we summarize the involvement of the Rho-ROCK pathway in CNS disorders such as spinal cord injuries, stroke, and AD and also discuss the potential of Rho-ROCK inhibitors in the treatment of human CNS disorders.
    [Show full text]
  • RNA-Binding Protein Network Alteration Causes Aberrant Axon
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.26.268631; this version posted August 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 RNA-binding protein network alteration causes aberrant axon 2 branching and growth phenotypes in FUS ALS mutant motoneurons 3 4 Maria Giovanna Garone1, Nicol Birsa2,3, Maria Rosito4, Federico Salaris1,4, Michela Mochi1, Valeria 5 de Turris4, Remya R. Nair5, Thomas J. Cunningham5, Elizabeth M. C. Fisher2, Pietro Fratta2 and 6 Alessandro Rosa1,4,6,* 7 8 1. Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le 9 A. Moro 5, 00185 Rome, Italy 10 2. UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, 11 UK 12 3. UK Dementia Research Institute, University College London, London, WC1E 6BT, UK 13 4. Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 14 Rome, Italy 15 5. MRC Harwell Institute, Oxfordshire, OX11 0RD, UK 16 6. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of 17 Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Viale Regina Elena 18 291, 00161 Rome, Italy 19 20 * Corresponding author: [email protected]; Tel: +39-0649255218 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.26.268631; this version posted August 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Analysis of Proteins That Rapidly Change Upon Mechanistic
    crossmark Research © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Analysis of Proteins That Rapidly Change Upon Mechanistic/Mammalian Target of Rapamycin Complex 1 (mTORC1) Repression Identifies Parkinson Protein 7 (PARK7) as a Novel Protein Aberrantly Expressed in Tuberous Sclerosis Complex (TSC)*□S Farr Niere‡§¶ʈ§§, Sanjeev Namjoshi‡§ §§, Ehwang Song**, Geoffrey A. Dilly‡§¶, Grant Schoenhard‡‡, Boris V. Zemelman‡§¶, Yehia Mechref**, and Kimberly F. Raab-Graham‡§¶ʈ‡‡¶¶ Many biological processes involve the mechanistic/mam- ally alters the expression of proteins associated with malian target of rapamycin complex 1 (mTORC1). Thus, epilepsy, Alzheimer’s disease, and autism spectrum the challenge of deciphering mTORC1-mediated func- disorder—neurological disorders that exhibit elevated tions during normal and pathological states in the central mTORC1 activity. Through a protein–protein interaction nervous system is challenging. Because mTORC1 is at the network analysis, we have identified common proteins core of translation, we have investigated mTORC1 func- shared among these mTORC1-related diseases. One such tion in global and regional protein expression. Activation protein is Parkinson protein 7, which has been implicated of mTORC1 has been generally regarded to promote in Parkinson’s disease, yet not associated with epilepsy, translation. Few but recent works have shown that sup- Alzheimers disease, or autism spectrum disorder. To ver- pression of mTORC1 can also promote local protein syn- ify our finding, we provide evidence that the protein ex- thesis. Moreover, excessive mTORC1 activation during pression of Parkinson protein 7, including new protein diseased states represses basal and activity-induced pro- synthesis, is sensitive to mTORC1 inhibition.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Self-Organized Cortical Map Formation by Guiding Connections
    SELF-ORGANIZED CORTICAL MAP FORMATION BY GUIDING CONNECTIONS Stanley Y. M. Lam1, Bertram E. Shi1and Kwabena A. Boahen2 1Dept. of EEE, HKUST, {eelym,eebert}@ust.hk and 2Dept. of Bioengineering, UPenn, [email protected] ABSTRACT demonstrate that the system can start with random initial connec- tions and gradually evolve the connections over time to replicate We describe an algorithm for self-organizing connections from a the topography of the source array in the target array. source array to a target array of neurons that is inspired by neural This paper has three goals. First, it demonstrates that this growth cone guidance. Each source neuron projects a Gaussian approach can lead to retinotopic maps that also exhibit other prop- pattern of connections to the target layer. Learning modifies the erties associated with the primary visual cortex, such as ocular pattern center location. The small number of parameters required dominance and orientation selectivity. Second, it establishes the to specify connectivity has enabled this algorithm's implementa- stability of this map formation process. Finally, it relates this tion in a neuromorphic silicon system. We demonstrate that this approach to previously proposed algorithms for map formation. algorithm can lead to topographic feature maps similar to those observed in the visual cortex, and characterize its operation as Section 2 of this paper introduces the learning algorithm. Section function maximization, which connects this approach with other 3 shows via simulation that this algorithm can lead to ocular dom- models of cortical map formation. inance and orientation maps similar to those observed in cortex. Section 4 analyzes the dynamics of learning, and shows that it evolves in such a way as to maximize an energy function.
    [Show full text]
  • DNA Methylation, Mechanisms of FMR1 Inactivation and Therapeutic Perspectives for Fragile X Syndrome
    biomolecules Review DNA Methylation, Mechanisms of FMR1 Inactivation and Therapeutic Perspectives for Fragile X Syndrome Veronica Nobile 1, Cecilia Pucci 1, Pietro Chiurazzi 1,2 , Giovanni Neri 1,3 and Elisabetta Tabolacci 1,* 1 Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; [email protected] (V.N.); [email protected] (C.P.); [email protected] (P.C.); [email protected] (G.N.) 2 Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Genetica Medica, 00168 Rome, Italy 3 Greenwood Genetic Center, JC Self Research Institute, Greenwood, SC 29646, USA * Correspondence: [email protected]; Tel.: +39-06-30154606 Abstract: Among the inherited causes of intellectual disability and autism, Fragile X syndrome (FXS) is the most frequent form, for which there is currently no cure. In most FXS patients, the FMR1 gene is epigenetically inactivated following the expansion over 200 triplets of a CGG repeat (FM: full mutation). FMR1 encodes the Fragile X Mental Retardation Protein (FMRP), which binds several mRNAs, mainly in the brain. When the FM becomes methylated at 10–12 weeks of gestation, the FMR1 gene is transcriptionally silent. The molecular mechanisms involved in the epigenetic silencing are not fully elucidated. Among FXS families, there is a rare occurrence of males carrying a FM, which remains active because it is not methylated, thus ensuring enough FMRPs to allow for an intellectual development within normal range. Which mechanisms are responsible for sparing these individuals from being affected by FXS? In order to answer this critical question, which may have possible implications for FXS therapy, several potential epigenetic mechanisms have been described.
    [Show full text]
  • Therapeutic Strategies in Fragile X Syndrome: Dysregulated Mglur Signaling and Beyond
    Neuropsychopharmacology REVIEWS (2012) 37, 178–195 & 2012 American College of Neuropsychopharmacology All rights reserved 0893-133X/12 ............................................................................................................................................................... REVIEW 178 www.neuropsychopharmacology.org Therapeutic Strategies in Fragile X Syndrome: Dysregulated mGluR Signaling and Beyond 1 ,2 ,1,3 Christina Gross , Elizabeth M Berry-Kravis* and Gary J Bassell* 1 2 Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Departments of Pediatrics, Neurology, 3 and Biochemistry, Rush University Medical Center, Chicago, IL, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA Fragile X syndrome (FXS) is an inherited neurodevelopmental disease caused by loss of function of the fragile X mental retardation protein (FMRP). In the absence of FMRP, signaling through group 1 metabotropic glutamate receptors is elevated and insensitive to stimulation, which may underlie many of the neurological and neuropsychiatric features of FXS. Treatment of FXS animal models with negative allosteric modulators of these receptors and preliminary clinical trials in human patients support the hypothesis that metabotropic glutamate receptor signaling is a valuable therapeutic target in FXS. However, recent research has also shown that FMRP may regulate diverse aspects of neuronal signaling downstream of several cell surface receptors, suggesting a possible new route to more direct disease-targeted therapies. Here, we summarize promising recent advances in basic research identifying and testing novel therapeutic strategies in FXS models, and evaluate their potential therapeutic benefits. We provide an overview of recent and ongoing clinical trials motivated by some of these findings, and discuss the challenges for both basic science and clinical applications in the continued development of effective disease mechanism-targeted therapies for FXS.
    [Show full text]
  • Role of Phosphodiesterases in the Pathophysiology of Neurodevelopmental Disorders
    Molecular Psychiatry https://doi.org/10.1038/s41380-020-00997-9 REVIEW ARTICLE Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders 1 2 Sébastien Delhaye ● Barbara Bardoni Received: 4 July 2020 / Revised: 3 December 2020 / Accepted: 9 December 2020 © The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021. This article is published with open access Abstract Phosphodiesterases (PDEs) are enzymes involved in the homeostasis of both cAMP and cGMP. They are members of a family of proteins that includes 11 subfamilies with different substrate specificities. Their main function is to catalyze the hydrolysis of cAMP, cGMP, or both. cAMP and cGMP are two key second messengers that modulate a wide array of intracellular processes and neurobehavioral functions, including memory and cognition. Even if these enzymes are present in all tissues, we focused on those PDEs that are expressed in the brain. We took into consideration genetic variants in patients affected by neurodevelopmental disorders, phenotypes of animal models, and pharmacological effects of PDE inhibitors, a class of drugs in rapid evolution and increasing application to brain disorders. Collectively, these data indicate the potential 1234567890();,: 1234567890();,: of PDE modulators to treat neurodevelopmental diseases characterized by learning and memory impairment, alteration of behaviors associated with depression, and deficits in social interaction. Indeed, clinical trials are in progress to treat patients with Alzheimer’s disease, schizophrenia, depression, and autism spectrum disorders. Among the most recent results, the application of some PDE inhibitors (PDE2A, PDE3, PDE4/4D, and PDE10A) to treat neurodevelopmental diseases, including autism spectrum disorders and intellectual disability, is a significant advance, since no specific therapies are available for these disorders that have a large prevalence.
    [Show full text]
  • Altered Gut Microbiota in a Fragile X Syndrome Mouse Model
    fnins-15-653120 May 26, 2021 Time: 10:27 # 1 ORIGINAL RESEARCH published: 26 May 2021 doi: 10.3389/fnins.2021.653120 Altered Gut Microbiota in a Fragile X Syndrome Mouse Model Francisco Altimiras1,2*, José Antonio Garcia1, Ismael Palacios-García3,4, Michael J. Hurley5, Robert Deacon6,7, Bernardo González8,9 and Patricia Cogram6,7* 1 Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile, 2 Faculty of Engineering and Business, Universidad de las Américas, Santiago, Chile, 3 School of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile, 4 Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile, 5 Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom, 6 Department of Genetics, Institute of Ecology and Biodiversity (IEB), Faculty of Sciences, Universidad de Chile, Santiago, Chile, 7 FRAXA-DVI, FRAXA Research Foundation, Santiago, Chile, 8 Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile, 9 Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile The human gut microbiome is the ecosystem of microorganisms that live in the human digestive system. Several studies have related gut microbiome variants to metabolic, immune and nervous system disorders. Fragile X syndrome (FXS) is a neurodevelopmental disorder considered the most common cause of inherited intellectual disability and the leading monogenetic cause of autism.
    [Show full text]
  • Impaired Presynaptic Long-Term Potentiation in the Anterior Cingulate Cortex of Fmr1 Knock-Out Mice
    The Journal of Neuroscience, February 4, 2015 • 35(5):2033–2043 • 2033 Cellular/Molecular Impaired Presynaptic Long-Term Potentiation in the Anterior Cingulate Cortex of Fmr1 Knock-out Mice Kohei Koga,1,2* Ming-Gang Liu,1,3* Shuang Qiu,1,2* Qian Song,1,2 Gerile O’Den,2 Tao Chen,1,2,4 and Min Zhuo1,2 1Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, 2Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049, China, 3Department of Anatomy and Histology and Embryology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China, and 4Department of Anatomy and KK Leung Brain Research Center, Fourth Military Medical University, Xi’an, Shanxi 710032, China Fragile X syndrome is a common inherited form of mental impairment. Fragile X mental retardation protein (FMRP) plays important roles in the regulation of synaptic protein synthesis, and loss of FMRP leads to deficits in learning-related synaptic plasticity and behavioraldisability.Previousstudiesmostlyfocusonpostsynapticlong-termpotentiation(LTP)inFmr1knock-out(KO)mice.Here,we investigatetheroleofFMRPinpresynapticLTP(pre-LTP)intheadultmouseanteriorcingulatecortex(ACC).Low-frequencystimulation induced LTP in layer II/III pyramidal neurons under the voltage-clamp mode. Paired-pulse ratio, which is a parameter for presynaptic changes, was decreased after the low-frequency stimulation in Fmr1 wild-type (WT) mice. Cingulate pre-LTP was abolished in Fmr1 KO mice. We also used a 64-electrode array system for field EPSP recording and found that the combination of low-frequency stimulation paired with a GluK1-containing kainate receptor agonist induced NMDA receptor-independent and metabotropic glutamate receptor- dependentpre-LTPintheWTmice.ThispotentiationwasblockedinFmr1KOmice.BiochemicalexperimentsshowedthatFmr1KOmice displayed altered translocation of protein kinase A subunits in the ACC.
    [Show full text]
  • Pioneer Growth Cone Morphologies Reveal Proximal Increases in Substrate Affinity Within Leg Segments of Grasshopper Embryos
    The Journal of Neuroscience February 1986, 6(2): 364-379 Pioneer Growth Cone Morphologies Reveal Proximal Increases in Substrate Affinity Within Leg Segments of Grasshopper Embryos Michael Gaudy* and David Bentley-f *Biophysics Group and tDepartment of Zoology, University of California, Berkeley, California 94720 We have compared the morphologies of approximately 5000 limb segment boundaries (Bentley and Caudy, 1983b) and antibody-labeled afferent pioneer growth cones fixed at various guidepost cells. The dominant mechanism appears to be the stages of growth along their characteristic path over the epithe- guidepost cells, a set of nonadjacent, axonless cell bodies of lium in the legs of grasshopper embryos, and have used growth immature neurons (Bentley and Caudy, 1983a, b; Bentley and cone morphology as an indicator of differences in the affinity of Keshishian, 1982a, b; Ho and Goodman, 1982; Keshishian and the epithelial substrate for pioneer growth cones in viva. Growth Bentley, 1983a-c; Taghert et al., 1982). Ablation of the most cone morphologies differ markedly between different locations proximal guidepost cell pair has been shown to result in lack of in limb buds, and also in the same location in limbs at different normal growth (Bentley and Caudy, 1983a, b). stages of differentiation. Growth cones characteristically extend Additional mechanisms apparently guide the Ti 1 growth cones branches and lamellae circumferentially along segment bound- proximally before they contact any of the above cues (Bentley aries, and filopodia and lamellae are retained (or extended) and Caudy, 1983b). One possible external cue is an adhesion longer there. Where they contact a relatively well-differentiated gradient on the epithelial substrate over which the pioneer growth segment boundary, the growth cones also abruptly reorient cir- cones navigate (Bentley and Caudy, 1983b; Berlot and Good- cumferentially.
    [Show full text]
  • Npp2014167.Pdf
    Neuropsychopharmacology (2014) 39, 3100–3111 & 2014 American College of Neuropsychopharmacology. All rights reserved 0893-133X/14 www.neuropsychopharmacology.org Reduced Phenotypic Severity Following Adeno-Associated Virus-Mediated Fmr1 Gene Delivery in Fragile X Mice 1,3 1,3 1 1 Shervin Gholizadeh , Jason Arsenault , Ingrid Cong Yang Xuan , Laura K Pacey and David R Hampson*,1,2 1 2 Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a trinucleotide repeat expansion in the FMR1 gene that codes for fragile X mental retardation protein (FMRP). To determine if FMRP expression in the central nervous system could reverse phenotypic deficits in the Fmr1 knockout (KO) mouse model of FXS, we used a single-stranded adeno-associated viral (AAV) vector with viral capsids from serotype 9 that contained a major isoform of FMRP. FMRP transgene expression was driven by the neuron-selective synapsin-1 promoter. The vector was delivered to the brain via a single bilateral intracerebroventricular injection into neonatal Fmr1 KO mice and transgene expression and behavioral assessments were conducted 22–26 or 50–56 days post injection. Western blotting and immunocytochemical analyses of AAV–FMRP-injected mice revealed FMRP expression in the striatum, hippocampus, retrosplenial B cortex, and cingulate cortex. Cellular expression was selective for neurons and reached 50% of wild-type levels in the hippocampus and cortex at 56 days post injection. The pathologically elevated repetitive behavior and the deficit in social dominance behavior seen in phosphate-buffered saline-injected Fmr1 KO mice were reversed in AAV–FMRP-injected mice.
    [Show full text]