Characterization of Forbidden Subgraphs for the Existence of Even Factors in a Graph

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Forbidden Subgraphs for the Existence of Even Factors in a Graph Discrete Applied Mathematics 223 (2017) 135–139 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Characterization of forbidden subgraphs for the existence of even factors in a graph Liming Xiong School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, PR China article info a b s t r a c t ∼ Article history: In 2008, it is shown that if H D K1;3 (the claw), then every H-free graph G has an even Received 25 October 2015 factor if and only if δ.G/ ≥ 2 and every odd branch-bond of G having an edge-branch. In Received in revised form 15 February 2017 this paper, we characterize all connected graphs H with order at least three such that every Accepted 16 February 2017 H-free graph has an even factor if and only if δ.G/ ≥ 2 and every odd branch-bond of G has Available online 9 March 2017 an edge-branch. ' 2017 Elsevier B.V. All rights reserved. Keywords: Even factor Forbidden graph Chair-free Claw-free Branch-bond 1. Introduction All graphs considered in this paper are simple graphs. For the notation or terminology not defined here, see [2]. We say that a graph G is H-free if G contains no induced subgraph isomorphic to H; H is also called a forbidden subgraph. We often require H to be connected; if H has order two, then H-free graph is a graph without any edge; these graphs are of little interest. Thus, we need H to have order at least three. Using a forbidden subgraph condition to characterize the graphs with some properties is a common one; while it often imposes some necessary conditions, for example, hamiltonian graphs with 2-connectivity, traceable graphs with connectivity, 2-factor graph with minimum degree at least two; see the following three theorems. Here a path Pk is a path of order k. Theorem 1 (Faudree and Gould, [3]). Suppose A is a connected graph of order at least 3. Then every 2-connected A-free graph is hamiltonian if and only if A D P3. Theorem 2 (Faudree and Gould, [3]). Suppose A is a connected graph of order at least 3. Then every connected A-free is traceable if and only if A D P3. Although a graph to be hamiltonian (must have a 2-factor, with exactly one component) seems to be stronger than it has a 2-factor (may not be hamiltonian), the following result shows the forbidden subgraph condition is the same (comparing it with Theorem 1). Theorem 3 (Aldred, Fujisawa and Saito, [1]). Suppose A is a connected graph of order at least 3. Then every connected graph with δ.G/ ≥ 2 contains 2-factor if and only if A D P3. E-mail address: [email protected]. http://dx.doi.org/10.1016/j.dam.2017.02.015 0166-218X/' 2017 Elsevier B.V. All rights reserved. 136 L. Xiong / Discrete Applied Mathematics 223 (2017) 135–139 In [5], Lai considered the same problem in a slight different way. A graph is called supereulerian if it has a spanning eulerian subgraph. A graph H is called an induced minor if it is isomorphic to a contraction image of an induced subgraph of G.A wheel Wn is the graph obtained from an n-cycle Cn D u1u2 ::: unu1 and an additional vertex u by joining u with 0 ui for all i. Define the subdivided wheel Wn to be the graph obtained from Wn by subdividing each edge in E.Cn/ once. Let D f 0 V ≥ g Ω Wn n 2 . Note that 2-edge connectivity is a necessary condition for a graph to be supereulerian. Theorem 4 (Lai, [5]). Let G be a 2-edge connected graph. Then every 2-edge connected induced subgraph of G is supereulerian if, and only if, G has no induced minor isomorphic to a member in Ω. A graph is called trivial if it has only one vertex, nontrivial otherwise. A subgraph of a graph G is called even if its degrees are all even. An even subgraph H is called nontrivial if each of its components is nontrivial. A subgraph of G is called an even factor if it is an even nontrivial spanning subgraph of G. A supereulerian graph has an even factor with exactly one component. A nontrivial path is called a branch if it has only internal vertices of degree two and end vertices of degree not two. The length of a branch is the number of its edges. Note that a branch of length one has no internal vertex, is called an edge branch. We denote by B.G/ the set of branches of G. For any subset S of B.G/, we denote by G−S the subgraph obtained from G by deleting all edges and internal vertices of branches of S. A subset S of B.G/ is called a branch cut if G − S has more components than G. A minimal branch cut is called a branch-bond. A branch-bond is called odd if it has an odd number of branches. The idea of branch-bond comes originally from [9] which has also been applied in [4,8,7]. A star is the complete bipartite graph K1;m.A K1;3 is also called a claw. If G has an even factor, then δ.G/ ≥ 2 and G has no odd branch-bonds with a shortest branch of length at least 2. The following result shows that the two obvious necessary conditions for the existence of even factors are also sufficient for claw-free graphs. Note that there is a polynomial-time algorithm to determine whether a graph satisfies the hypothesis that every odd branch-bond has an edge branch, see, e.g., [6]. Theorem 5 (Xiong, [7]). Let G be a claw-free graph. Then G has an even factor if and only if δ.G/ ≥ 2 and every odd branch-bond of G has an edge branch. The results above motivate the research of extending Theorem 5. In this paper, we shall characterize all connected graphs H of order at least three guaranteeing that those obvious necessary conditions for the existence of even factors in G are also sufficient. 2. Main results and their proofs We start with the following auxiliary result. Theorem 6 (Xiong, [8]). Let ` be a positive integer. Then a graph G has a set of vertex-disjoint circuits containing all branches of length not ` if every odd branch-bond of G has a shortest branch of length `. The unique tree with a degree sequence 1,1,1,2,3 is called a chair.A circuit is a connected even graph with at least three vertices. In the proof of main theorem, we frequently take the symmetric difference of a graph and a cycle. Let H be a subgraph of a graph G, and let C be a cycle in G. Then we define H1C by H1C D V .H/ [ V .C/; E.H/1E.C/, where A1B denotes the symmetric difference of the sets A and B. Note that if H is an even graph, then H1C is also an even graph, but H1C may have more isolated vertices than H. We first prove the following result. 0 ≥ Theorem 7. Let G be either a P5-free graph or a chair-free graph other than W3. Then G has an even factor if and only if δ.G/ 2 and every odd branch-bond of G has an edge branch. Proof of Theorem 7. Necessity. An even factor should have minimum degree at least two and a graph has no even factor if it has an odd branch-bond which contains a shortest branch of length at least two. 0 ≥ Sufficiency. Let G be a P5-free or chair-free graph other than W3 with δ.G/ 2 in which every odd branch-bond has an edge branch. By Theorem 6, there exists an even subgraph C of G which contains all branches of length at least 2. Then C contains all the vertices of degree 2. Now choose an even subgraph C of G containing all the vertices of degree 2 so that C contains as many vertices of possible. We claim that C is a spanning subgraph of G. Assume V .C/ 6D V .G/. By the maximality of C, G n V .C/ does not contain an even subgraph. Let x 2 V .G/ n V .C/. By the choice of C, dG.x/ ≥ 3. Claim 1. NG.x/ is independent in G. Proof. Assume y1y2 2 E.G/ for some fy1; y2g ⊂ NG.x/. Let C1 D C∆.xy1y2x/. Then C1 is an even subgraph of G. Moreover, since x 62 V .C/, fxy1; xy2g \ E.C/ D;. Then fx; y1; y2g ⊂ V .C1/ and hence V .C1/ D V .C/ [ fxg. This contradicts the maximality of C. L. Xiong / Discrete Applied Mathematics 223 (2017) 135–139 137 Claim 2. Let y1 and y2 be distinct neighbors of x and let z 2 .NG.y1/ \ NG.y2// n fxg. Then (a) dC .z/ D 2 and fy1z; y2zg ⊂ E.C/, and 0 0 0 0 0 (b) for each y 2 NG.x/ (possibly y 2 fy1; y2g) and z 2 NG.y / n fxg, zz 62 E.G/. Proof. (a) Let C2 D C∆.xy1zy2x/. Then C2 is an even subgraph of G. Since fxy1; xy2g\ E.C/ D;, we have fx; y1; y2g ⊂ V .C2/.
Recommended publications
  • Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities
    Discussiones Mathematicae General Algebra and Applications 40 (2020) 143–157 doi:10.7151/dmgaa.1344 GRAPH VARIETIES AXIOMATIZED BY SEMIMEDIAL, MEDIAL, AND SOME OTHER GROUPOID IDENTITIES Erkko Lehtonen Technische Universit¨at Dresden Institut f¨ur Algebra 01062 Dresden, Germany e-mail: [email protected] and Chaowat Manyuen Department of Mathematics, Faculty of Science Khon Kaen University Khon Kaen 40002, Thailand e-mail: [email protected] Abstract Directed graphs without multiple edges can be represented as algebras of type (2, 0), so-called graph algebras. A graph is said to satisfy an identity if the corresponding graph algebra does, and the set of all graphs satisfying a set of identities is called a graph variety. We describe the graph varieties axiomatized by certain groupoid identities (medial, semimedial, autodis- tributive, commutative, idempotent, unipotent, zeropotent, alternative). Keywords: graph algebra, groupoid, identities, semimediality, mediality. 2010 Mathematics Subject Classification: 05C25, 03C05. 1. Introduction Graph algebras were introduced by Shallon [10] in 1979 with the purpose of providing examples of nonfinitely based finite algebras. Let us briefly recall this concept. Given a directed graph G = (V, E) without multiple edges, the graph algebra associated with G is the algebra A(G) = (V ∪ {∞}, ◦, ∞) of type (2, 0), 144 E. Lehtonen and C. Manyuen where ∞ is an element not belonging to V and the binary operation ◦ is defined by the rule u, if (u, v) ∈ E, u ◦ v := (∞, otherwise, for all u, v ∈ V ∪ {∞}. We will denote the product u ◦ v simply by juxtaposition uv. Using this representation, we may view any algebraic property of a graph algebra as a property of the graph with which it is associated.
    [Show full text]
  • Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth∗
    Counting independent sets in graphs with bounded bipartite pathwidth∗ Martin Dyery Catherine Greenhillz School of Computing School of Mathematics and Statistics University of Leeds UNSW Sydney, NSW 2052 Leeds LS2 9JT, UK Australia [email protected] [email protected] Haiko M¨uller∗ School of Computing University of Leeds Leeds LS2 9JT, UK [email protected] 7 August 2019 Abstract We show that a simple Markov chain, the Glauber dynamics, can efficiently sample independent sets almost uniformly at random in polynomial time for graphs in a certain class. The class is determined by boundedness of a new graph parameter called bipartite pathwidth. This result, which we prove for the more general hardcore distribution with fugacity λ, can be viewed as a strong generalisation of Jerrum and Sinclair's work on approximately counting matchings, that is, independent sets in line graphs. The class of graphs with bounded bipartite pathwidth includes claw-free graphs, which generalise line graphs. We consider two further generalisations of claw-free graphs and prove that these classes have bounded bipartite pathwidth. We also show how to extend all our results to polynomially-bounded vertex weights. 1 Introduction There is a well-known bijection between matchings of a graph G and independent sets in the line graph of G. We will show that we can approximate the number of independent sets ∗A preliminary version of this paper appeared as [19]. yResearch supported by EPSRC grant EP/S016562/1 \Sampling in hereditary classes". zResearch supported by Australian Research Council grant DP190100977. 1 in graphs for which all bipartite induced subgraphs are well structured, in a sense that we will define precisely.
    [Show full text]
  • Forbidding Subgraphs
    Graph Theory and Additive Combinatorics Lecturer: Prof. Yufei Zhao 2 Forbidding subgraphs 2.1 Mantel’s theorem: forbidding a triangle We begin our discussion of extremal graph theory with the following basic question. Question 2.1. What is the maximum number of edges in an n-vertex graph that does not contain a triangle? Bipartite graphs are always triangle-free. A complete bipartite graph, where the vertex set is split equally into two parts (or differing by one vertex, in case n is odd), has n2/4 edges. Mantel’s theorem states that we cannot obtain a better bound: Theorem 2.2 (Mantel). Every triangle-free graph on n vertices has at W. Mantel, "Problem 28 (Solution by H. most bn2/4c edges. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff). Wiskundige Opgaven 10, 60 —61, 1907. We will give two proofs of Theorem 2.2. Proof 1. G = (V E) n m Let , a triangle-free graph with vertices and x edges. Observe that for distinct x, y 2 V such that xy 2 E, x and y N(x) must not share neighbors by triangle-freeness. Therefore, d(x) + d(y) ≤ n, which implies that d(x)2 = (d(x) + d(y)) ≤ mn. ∑ ∑ N(y) x2V xy2E y On the other hand, by the handshake lemma, ∑x2V d(x) = 2m. Now by the Cauchy–Schwarz inequality and the equation above, Adjacent vertices have disjoint neigh- borhoods in a triangle-free graph. !2 ! 4m2 = ∑ d(x) ≤ n ∑ d(x)2 ≤ mn2; x2V x2V hence m ≤ n2/4.
    [Show full text]
  • The Labeled Perfect Matching in Bipartite Graphs Jérôme Monnot
    The Labeled perfect matching in bipartite graphs Jérôme Monnot To cite this version: Jérôme Monnot. The Labeled perfect matching in bipartite graphs. Information Processing Letters, Elsevier, 2005, to appear, pp.1-9. hal-00007798 HAL Id: hal-00007798 https://hal.archives-ouvertes.fr/hal-00007798 Submitted on 5 Aug 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Labeled perfect matching in bipartite graphs J´erˆome Monnot∗ July 4, 2005 Abstract In this paper, we deal with both the complexity and the approximability of the labeled perfect matching problem in bipartite graphs. Given a simple graph G = (V, E) with |V | = 2n vertices such that E contains a perfect matching (of size n), together with a color (or label) function L : E → {c1, . , cq}, the labeled perfect matching problem consists in finding a perfect matching on G that uses a minimum or a maximum number of colors. Keywords: labeled matching; bipartite graphs; NP-complete; approximate algorithms. 1 Introduction Let Π be a NPO problem accepting simple graphs G = (V,E) as instances, edge-subsets E′ ⊆ E verifying a given polynomial-time decidable property Pred as solutions, and the solutions cardinality as objective function; the labeled problem associated to Π, denoted by Labeled Π, seeks, given an instance I = (G, L) where G = (V,E) is a simple graph ′ and L is a mapping from E to {c1,...,cq}, in finding a subset E verifying Pred that optimizes the size of the set L(E′)= {L(e): e ∈ E′}.
    [Show full text]
  • Density Theorems for Bipartite Graphs and Related Ramsey-Type Results
    Density theorems for bipartite graphs and related Ramsey-type results Jacob Fox Benny Sudakov Princeton UCLA and IAS Ramsey’s theorem Definition: r(G) is the minimum N such that every 2-edge-coloring of the complete graph KN contains a monochromatic copy of graph G. Theorem: (Ramsey-Erdos-Szekeres,˝ Erdos)˝ t/2 2t 2 ≤ r(Kt ) ≤ 2 . Question: (Burr-Erd˝os1975) How large is r(G) for a sparse graph G on n vertices? Ramsey numbers for sparse graphs Conjecture: (Burr-Erd˝os1975) For every d there exists a constant cd such that if a graph G has n vertices and maximum degree d, then r(G) ≤ cd n. Theorem: 1 (Chv´atal-R¨odl-Szemer´edi-Trotter 1983) cd exists. 2αd 2 (Eaton 1998) cd ≤ 2 . βd αd log2 d 3 (Graham-R¨odl-Ruci´nski2000) 2 ≤ cd ≤ 2 . Moreover, if G is bipartite, r(G) ≤ 2αd log d n. Density theorem for bipartite graphs Theorem: (F.-Sudakov) Let G be a bipartite graph with n vertices and maximum degree d 2 and let H be a bipartite graph with parts |V1| = |V2| = N and εN edges. If N ≥ 8dε−d n, then H contains G. Corollary: For every bipartite graph G with n vertices and maximum degree d, r(G) ≤ d2d+4n. (D. Conlon independently proved that r(G) ≤ 2(2+o(1))d n.) Proof: Take ε = 1/2 and H to be the graph of the majority color. Ramsey numbers for cubes Definition: d The binary cube Qd has vertex set {0, 1} and x, y are adjacent if x and y differ in exactly one coordinate.
    [Show full text]
  • Constrained Representations of Map Graphs and Half-Squares
    Constrained Representations of Map Graphs and Half-Squares Hoang-Oanh Le Berlin, Germany [email protected] Van Bang Le Universität Rostock, Institut für Informatik, Rostock, Germany [email protected] Abstract The square of a graph H, denoted H2, is obtained from H by adding new edges between two distinct vertices whenever their distance in H is two. The half-squares of a bipartite graph B = (X, Y, EB ) are the subgraphs of B2 induced by the color classes X and Y , B2[X] and B2[Y ]. For a given graph 2 G = (V, EG), if G = B [V ] for some bipartite graph B = (V, W, EB ), then B is a representation of G and W is the set of points in B. If in addition B is planar, then G is also called a map graph and B is a witness of G [Chen, Grigni, Papadimitriou. Map graphs. J. ACM, 49 (2) (2002) 127-138]. While Chen, Grigni, Papadimitriou proved that any map graph G = (V, EG) has a witness with at most 3|V | − 6 points, we show that, given a map graph G and an integer k, deciding if G admits a witness with at most k points is NP-complete. As a by-product, we obtain NP-completeness of edge clique partition on planar graphs; until this present paper, the complexity status of edge clique partition for planar graphs was previously unknown. We also consider half-squares of tree-convex bipartite graphs and prove the following complexity 2 dichotomy: Given a graph G = (V, EG) and an integer k, deciding if G = B [V ] for some tree-convex bipartite graph B = (V, W, EB ) with |W | ≤ k points is NP-complete if G is non-chordal dually chordal and solvable in linear time otherwise.
    [Show full text]
  • Graph Theory
    1 Graph Theory “Begin at the beginning,” the King said, gravely, “and go on till you come to the end; then stop.” — Lewis Carroll, Alice in Wonderland The Pregolya River passes through a city once known as K¨onigsberg. In the 1700s seven bridges were situated across this river in a manner similar to what you see in Figure 1.1. The city’s residents enjoyed strolling on these bridges, but, as hard as they tried, no residentof the city was ever able to walk a route that crossed each of these bridges exactly once. The Swiss mathematician Leonhard Euler learned of this frustrating phenomenon, and in 1736 he wrote an article [98] about it. His work on the “K¨onigsberg Bridge Problem” is considered by many to be the beginning of the field of graph theory. FIGURE 1.1. The bridges in K¨onigsberg. J.M. Harris et al., Combinatorics and Graph Theory , DOI: 10.1007/978-0-387-79711-3 1, °c Springer Science+Business Media, LLC 2008 2 1. Graph Theory At first, the usefulness of Euler’s ideas and of “graph theory” itself was found only in solving puzzles and in analyzing games and other recreations. In the mid 1800s, however, people began to realize that graphs could be used to model many things that were of interest in society. For instance, the “Four Color Map Conjec- ture,” introduced by DeMorgan in 1852, was a famous problem that was seem- ingly unrelated to graph theory. The conjecture stated that four is the maximum number of colors required to color any map where bordering regions are colored differently.
    [Show full text]
  • Lecture 12 — October 10, 2017 1 Overview 2 Matchings in Bipartite Graphs
    CS 388R: Randomized Algorithms Fall 2017 Lecture 12 | October 10, 2017 Prof. Eric Price Scribe: Shuangquan Feng, Xinrui Hua 1 Overview In this lecture, we will explore 1. Problem of finding matchings in bipartite graphs. 2. Hall's Theorem: sufficient and necessary condition for the existence of perfect matchings in bipartite graphs. 3. An algorithm for finding perfect matching in d-regular bipartite graphs when d = 2k which is based on the idea of Euler tour and has a time complexity of O(nd). 4. A randomized algorithm for finding perfect matchings in all d regular bipartite graphs which has an expected time complexity of O(n log n). 5. Problem of online bipartite matching. 2 Matchings in Bipartite Graphs Definition 1 (Bipartite Graph). A graph G = (V; E) is said to be bipartite if the vertex set V can be partitioned into 2 disjoint sets L and R so that any edge has one vertex in L and the other in R. Definition 2 (Matching). Given an undirected graph G = (V; E), a matching is a subset of edges M ⊆ E that have no endpoints in common. Definition 3 (Maximum Matching). Given an undirected graph G = (V; E), a maximum matching M is a matching of maximum size. Thus for any other matching M 0, we have that jMj ≥ jM 0j. Definition 4 (Perfect Matching). Given an bipartite graph G = (V; E), with the bipartition V = L [ R where jLj = jRj = n, a perfect matching is a maximum matching of size n. There are several well known algorithms for the problem of finding maximum matchings in bipartite graphs.
    [Show full text]
  • Lecture 9-10: Extremal Combinatorics 1 Bipartite Forbidden Subgraphs 2 Graphs Without Any 4-Cycle
    MAT 307: Combinatorics Lecture 9-10: Extremal combinatorics Instructor: Jacob Fox 1 Bipartite forbidden subgraphs We have seen the Erd}os-Stonetheorem which says that given a forbidden subgraph H, the extremal 1 2 number of edges is ex(n; H) = 2 (1¡1=(Â(H)¡1)+o(1))n . Here, o(1) means a term tending to zero as n ! 1. This basically resolves the question for forbidden subgraphs H of chromatic number at least 3, since then the answer is roughly cn2 for some constant c > 0. However, for bipartite forbidden subgraphs, Â(H) = 2, this answer is not satisfactory, because we get ex(n; H) = o(n2), which does not determine the order of ex(n; H). Hence, bipartite graphs form the most interesting class of forbidden subgraphs. 2 Graphs without any 4-cycle Let us start with the ¯rst non-trivial case where H is bipartite, H = C4. I.e., the question is how many edges G can have before a 4-cycle appears. The answer is roughly n3=2. Theorem 1. For any graph G on n vertices, not containing a 4-cycle, 1 p E(G) · (1 + 4n ¡ 3)n: 4 Proof. Let dv denote the degree of v 2 V . Let F denote the set of \labeled forks": F = f(u; v; w):(u; v) 2 E; (u; w) 2 E; v 6= wg: Note that we do not care whether (v; w) is an edge or not. We count the size of F in two possible ways: First, each vertex u contributes du(du ¡ 1) forks, since this is the number of choices for v and w among the neighbors of u.
    [Show full text]
  • Hypergraph Packing and Sparse Bipartite Ramsey Numbers
    Hypergraph packing and sparse bipartite Ramsey numbers David Conlon ∗ Abstract We prove that there exists a constant c such that, for any integer ∆, the Ramsey number of a bipartite graph on n vertices with maximum degree ∆ is less than 2c∆n. A probabilistic argument due to Graham, R¨odland Ruci´nskiimplies that this result is essentially sharp, up to the constant c in the exponent. Our proof hinges upon a quantitative form of a hypergraph packing result of R¨odl,Ruci´nskiand Taraz. 1 Introduction For a graph G, the Ramsey number r(G) is defined to be the smallest natural number n such that, in any two-colouring of the edges of Kn, there exists a monochromatic copy of G. That these numbers exist was proven by Ramsey [19] and rediscovered independently by Erd}osand Szekeres [10]. Whereas the original focus was on finding the Ramsey numbers of complete graphs, in which case it is known that t t p2 r(Kt) 4 ; ≤ ≤ the field has broadened considerably over the years. One of the most famous results in the area to date is the theorem, due to Chvat´al,R¨odl,Szemer´ediand Trotter [7], that if a graph G, on n vertices, has maximum degree ∆, then r(G) c(∆)n; ≤ where c(∆) is just some appropriate constant depending only on ∆. Their proof makes use of the regularity lemma and because of this the bound it gives on the constant c(∆) is (and is necessarily [11]) very bad. The situation was improved somewhat by Eaton [8], who proved, by using a variant of the regularity lemma, that the function c(∆) may be taken to be of the form 22c∆ .
    [Show full text]
  • From Tree-Depth to Shrub-Depth, Evaluating MSO-Properties in Constant Parallel Time
    From Tree-Depth to Shrub-Depth, Evaluating MSO-Properties in Constant Parallel Time Yijia Chen Fudan University August 5th, 2019 Parameterized Complexity and Practical Computing, Bergen Courcelle’s Theorem Theorem (Courcelle, 1990) Every problem definable in monadic second-order logic (MSO) can be decided in linear time on graphs of bounded tree-width. In particular, the 3-colorability problem can be solved in linear time on graphs of bounded tree-width. Model-checking monadic second-order logic (MSO) on graphs of bounded tree-width is fixed-parameter tractable. Monadic second-order logic MSO is the restriction of second-order logic in which every second-order variable is a set variable. A graph G is 3-colorable if and only if _ ^ G j= 9X19X29X3 8u Xiu ^ 8u :(Xiu ^ Xju) 16i63 16i<j63 ! ^ ^8u8v Euv ! :(Xiu ^ Xiv) . 16i63 MSO can also characterize Sat,Connectivity,Independent-Set,Dominating-Set, etc. Can we do better than linear time? Constant Parallel Time = AC0-Circuits. 0 A family of Boolean circuits Cn n2N areAC -circuits if for every n 2 N n (i) Cn computes a Boolean function from f0, 1g to f0, 1g; (ii) the depth of Cn is bounded by a fixed constant; (iii) the size of Cn is polynomially bounded in n. AC0 and parallel computation AC0-circuits parallel computation # of input gates length of input depth # of parallel computation steps size # of parallel processes AC0 and logic Theorem (Barrington, Immerman, and Straubing, 1990) A problem can be decided by a family of dlogtime uniform AC0-circuits if and only if it is definable in first-order logic (FO) with arithmetic.
    [Show full text]
  • THE CRITICAL GROUP of a LINE GRAPH: the BIPARTITE CASE Contents 1. Introduction 2 2. Preliminaries 2 2.1. the Graph Laplacian 2
    THE CRITICAL GROUP OF A LINE GRAPH: THE BIPARTITE CASE JOHN MACHACEK Abstract. The critical group K(G) of a graph G is a finite abelian group whose order is the number of spanning forests of the graph. Here we investigate the relationship between the critical group of a regular bipartite graph G and its line graph line G. The relationship between the two is known completely for regular nonbipartite graphs. We compute the critical group of a graph closely related to the complete bipartite graph and the critical group of its line graph. We also discuss general theory for the critical group of regular bipartite graphs. We close with various examples demonstrating what we have observed through experimentation. The problem of classifying the the relationship between K(G) and K(line G) for regular bipartite graphs remains open. Contents 1. Introduction 2 2. Preliminaries 2 2.1. The graph Laplacian 2 2.2. Theory of lattices 3 2.3. The line graph and edge subdivision graph 3 2.4. Circulant graphs 5 2.5. Smith normal form and matrices 6 3. Matrix reductions 6 4. Some specific regular bipartite graphs 9 4.1. The almost complete bipartite graph 9 4.2. Bipartite circulant graphs 11 5. A few general results 11 5.1. The quotient group 11 5.2. Perfect matchings 12 6. Looking forward 13 6.1. Odd primes 13 6.2. The prime 2 14 6.3. Example exact sequences 15 References 17 Date: December 14, 2011. A special thanks to Dr. Victor Reiner for his guidance and suggestions in completing this work.
    [Show full text]