On the Need for Volumetric Radar Data When Issuing Severe Thunderstorm and Tornado Warnings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Title: Preliminary Reflectivity Analysis of Severe Convective Events in in the Proximity of Goczałkowice-Zdrój
Title: Preliminary reflectivity analysis of severe convective events in in the proximity of Goczałkowice-Zdrój Author: Wojciech Pilorz, Philip Ciaramella Citation style: Pilorz Wojciech, Ciaramella Philip. (2019). Preliminary reflectivity analysis of severe convective events in in the proximity of Goczałkowice-Zdrój. "Environmental and Socio-Economic Studies" Vol. 7, iss. 2 (2019), s. 32-38. doi: 10.2478/environ-2019-0010 Environmental & Socio-economic Studies DOI: 10.2478/environ-2019-0010 Environ. Socio.-econ. Stud., 2019, 7, 2: 32-38 © 2019 Copyright by University of Silesia in Katowice ________________________________________________________________________________________________ Original article Preliminary reflectivity analysis of severe convective events in in the proximity of Goczałkowice-Zdrój, Poland Wojciech Pilorz1, 2*, Philip Ciaramella3 1Department of Climatology, Faculty of Earth Sciences, University of Silesia, Będzińska Str. 60, 41-200 Sosnowiec, Poland 2Ecoenergy – Water – Safety Technology Park, Żeliwna Str. 38, 40-599 Katowice, Poland 3Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska Str. 28, 40-032 Katowice, Poland E–mail address (*corresponding author): [email protected] ORCID iD: Wojciech Pilorz: https://orcid.org/0000-0001-9204-0680; Philip Ciaramella: https://orcid.org/0000-0003-1679-125X _______________________________________________________________________________________________________________________________________________ ABSTRACT At the beginning of 2018, the X-band radar in Goczałkowice-Zdrój (southern Poland) was launched. The scanning area corresponds with the scanning area of the POLRAD C-band radar system operated by the Polish Institute of Meteorology and Water Management. New opportunities were created for imaging phenomena by comparing some reflectivity features from C-Band radar and X-Band local weather radar. Moreover, some of the signatures located in the lower troposphere can be better documented by local X-Band radar. -
Multiple Sensor Severe Weather Application
P8R.4 STATUS ON THE FOUR-DIMENSIONAL RADAR ANALYSIS TOOL FOR AWIPS Gregory J. Stumpf1,2,*, Kurt D. Hondl3, Stephan B. Smith2 Robert Toomey1,3, M. Thomas Filiaggi2, V. Lakshmanan1,3 1Cooperative Institute for Mesoscale Meteorology Studies, Univ. of Oklahoma, Norman, OK. 2NOAA/National Weather Service Meteorological Development Laboratory, Silver Spring, MD. 3NOAA/National Severe Storms Laboratory, Norman, OK. 1. INTRODUCTION frequently portrayed with 2D dimensional representations and with 2D cross-sections. Stumpf et al. (2004) reported on a project being coordinated to integrate a 3D base radar data display For example, the seminal NWS training document to tool developed at the National Severe Storms identify features associated with supercell Laboratory (NSSL) into the Advanced Weather thunderstorms using radar, known as the “Lemon Interactive Processing System (AWIPS) (Wakefield, Technique”, was based on radar display technology of 1998). This prototype AWIPS radar display tool is the time (Lemon, 1977). The old Weather Surveillance currently known as the Four-Dimensional Stormcell Radar – 1957 (WSR-57) radar control and display Investigator (FSI). consoles allowed meteorologists to manually control the radar beam azimuth and elevation. This allowed radar Since that publication, some progress has been made to operators to cut both quasi-horizontal cross-sections in improve the NSSL 3D radar display. However, the work the form of the Plan Position Indicator (PPI) display, as to integrate the NSSL tool into AWIPS has unfortunately well as quasi-vertical cross-sections in the form of the been put on hold due to lack of resources. The Range Height Indicator (RHI) display. Figure 1 following manuscript will detail the status of this work illustrates some of the features associated with a classic done to adapt the WDSSII display system as a 3D, and supercell as they would be depicted on both a PPI and four-dimensional (animate in three dimensions), base an RHI display. -
Automated Processing of Doppler Radar Data for Severe Weather Warnings
2 Automated Processing of Doppler Radar Data for Severe Weather Warnings Paul Joe1, Sandy Dance2, Valliappa Lakshmanan3, Dirk Heizenreder 4, Paul James4, Peter Lang4, Thomas Hengstebeck4, Yerong Feng5, P.W. Li6, Hon-Yin Yeung6, Osamu Suzuki7, Keiji Doi7 and Jianhua Dai8 1Environment Canada 2Bureau of Meteorology, 3CIMMS/OU/National Severe Storms Laboratory, 4Deutcher Wetterdienst, 5Guandong Meteorological Bureau, China Meteorological Agency, 6Hong Kong Observatory, 7Japan Meteorological Agency, 8Shanghai Meteorological Bureau, China Meteorological Agency, 1Canada 2Australia 3USA 4Germany 7Japan 5,6,8China 1. Introduction Radar is the only operational tool that provides observations of severe weather producing thunderstorms on a fine enough temporal or spatial resolution (minutes and kilometers) that enables warnings of severe weather. It can provide a three- dimensional view about every five to ten minutes at a spatial resolution of the order of 1 km or less. The development and evolution of intense convective precipitation is closely linked to thunderstorms and so understanding of the microphysics and dynamics of precipitation is needed to understand the evolution of thunderstorms as diabatic and precipitation processes modify and create hazardous rain, hail, wind and lightning. The characteristics and proportion of severe weather is climatologically or geographically dependent. For example, the highest incidence of tornadoes is in the central U.S. whereas the tallest thunderstorms are found in Argentina (Zipser et al, 2006). Warning services developed at National Hydrological and Meteorological Services (NHMS) often originate because of a particular damaging severe weather event and ensuing expectations of the public. Office organization, resources and expertise are critical considerations in the use of radar for the preparation of severe weather warnings. -
Use of Radar for Severe Weather Warnings
Chapter Number Automated Processing of Doppler Radar Data for Severe Weather Forecasting Paul Joe1, Sandy Dance2, Valliappa Lakshmanan3, Dirk Heizenrehder4, Paul James4, Peter Lang4, Thomas Hengstebeck4, Yerong Feng5, P.W. Li6, Hon-Yin Yeung6, Osamu Suzuki7, Keiji Doi7, Jianhua Dai8 1Environment Canada 2Bureau of Meteorology, Australia 3CIMMS/OU/National Severe Storms Laboratory, U.S.A. 4Deustcherwetterdienst, Germany, 5Guandong Meteorological Bureau, China Meteorological Agency, China 6Hong Kong Observatory, China 7Japan Meteorological Agency, Japan 8Shanghai Meteorological Bureau, China Meteorological Agency, China 1 Introduction Radar is the only operational tool that provides observations of severe weather producing thunderstorms on a fine enough temporal or spatial resolution (minutes and kilometers) that enables warnings of severe weather. It can provide a three- dimensional view about every five to ten minutes at a spatial resolution of the order of 1 km or less. The development and evolution of intense convective precipitation is closely linked to thunderstorms and so understanding of the microphysics and dynamics of precipitation is needed to understand the evolution of thunderstorms as diabatic and precipitation processes modify and create hazardous rain, hail, wind and lightning. The characteristics and proportion of severe weather is climatologically or geographically dependent. For example, the highest incidence of tornadoes is in the central U.S. whereas the tallest thunderstorms are found in Argentina (Zipser et al, 2006). Warning services developed at National Hydrological and Meteorological Services (NHMS) often originate because of a particular damaging severe weather event and ensuing expectations of the public. Office organization, resources and expertise are critical considerations in the use of radar for the preparation of severe weather warnings. -
Environmental & Socio-Economic Studies
Environmental & Socio-economic Studies DOI: 10.2478/environ-2020-0016 Environ. Socio.-econ. Stud., 2020, 8, 3: 34-47 © 2020 Copyright by University of Silesia in Katowice ________________________________________________________________________________________________ Original article Radar reflectivity signatures and possible lead times of warnings for very large hail in Poland based on data from 2007-2015 Wojciech Pilorz 1, 2*, Ewa Łupikasza1 1Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska Str. 60, 41-200 Sosnowiec, Poland 2Skywarn Poland Association, 29 Listopada Str. 18/19, 00-465 Warsaw, Poland E–mail address (*corresponding author): [email protected] ORCID iD: Wojciech Pilorz: https://orcid.org/0000-0001-9204-0680; Ewa Łupikasza: https://orcid.org/0000-0002-3910-9076 ______________________________________________________________________________________________________________________________________________ ABSTRACT Hail involving very large hailstones (maximum diameter ≥ 5 cm), is a rare but very hazardous phenomenon in Poland, and can be forecast using reflectivity signatures. Every year, Poland experiences from one to over a dozen storms with such large hailstones. Despite the current recommendations regarding polarimetric techniques used in hail risk monitoring, Poland does not have a fully polarimetric radar network. Therefore it is essential to check hail detection capabilities using only reflectivity techniques based on individual radar systems involving hail detection algorithms such as Waldvogel et al. (1979) or Vertically Integrated Liquid thresholds connected with manual signature analysis to get better warning decisions. This study is aimed to determine the reflectivity features, thresholds and lead times for nowcasting of severe storms with very large hailstones in Poland, using data from the Polish radar system and from the European Severe Weather Database for the period 2007‒2015. -
Environmental & Socio-Economic Studies
Environmental & Socio-economic Studies DOI: 10.2478/environ-2019-0010 Environ. Socio.-econ. Stud., 2019, 7, 2: 32-38 © 2019 Copyright by University of Silesia in Katowice ________________________________________________________________________________________________ Original article Preliminary reflectivity analysis of severe convective events in in the proximity of Goczałkowice-Zdrój, Poland Wojciech Pilorz1, 2*, Philip Ciaramella3 1Department of Climatology, Faculty of Earth Sciences, University of Silesia, Będzińska Str. 60, 41-200 Sosnowiec, Poland 2Ecoenergy – Water – Safety Technology Park, Żeliwna Str. 38, 40-599 Katowice, Poland 3Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska Str. 28, 40-032 Katowice, Poland E–mail address (*corresponding author): [email protected] ORCID iD: Wojciech Pilorz: https://orcid.org/0000-0001-9204-0680; Philip Ciaramella: https://orcid.org/0000-0003-1679-125X _______________________________________________________________________________________________________________________________________________ ABSTRACT At the beginning of 2018, the X-band radar in Goczałkowice-Zdrój (southern Poland) was launched. The scanning area corresponds with the scanning area of the POLRAD C-band radar system operated by the Polish Institute of Meteorology and Water Management. New opportunities were created for imaging phenomena by comparing some reflectivity features from C-Band radar and X-Band local weather radar. Moreover, some of the signatures located in the lower troposphere can be better documented by local X-Band radar. Firstly, reports from the ESWD (European Severe Weather Database) have been thoroughly analysed. All severe weather reports in the proximity of Goczałkowice-Zdrój (100-km radius) were gathered into one-storm events. Then the reflectivity from both radars was analysed to determine which reflectivity patterns occurred and when. -
Title: Radar Reflectivity Signatures and Possible Lead Times of Warnings for Very Large Hail in Poland Based on Data from 2007-2015
Title: Radar reflectivity signatures and possible lead times of warnings for very large hail in Poland based on data from 2007-2015 Author: Wojciech Pilorz, Ewa Łupikasza Citation style: Pilorz Wojciech, Łupikasza Ewa. (2020). Radar reflectivity signatures and possible lead times of warnings for very large hail in Poland based on data from 2007-2015). "Environmental & Socio-Economic Studies" (Vol. 8, iss. 3 (2020), s. 34-47), DOI:10.2478/environ-2020-0016 Environmental & Socio-economic Studies DOI: 10.2478/environ-2020-0016 Environ. Socio.-econ. Stud., 2020, 8, 3: 34-47 © 2020 Copyright by University of Silesia in Katowice ________________________________________________________________________________________________ Original article Radar reflectivity signatures and possible lead times of warnings for very large hail in Poland based on data from 2007-2015 Wojciech Pilorz 1, 2*, Ewa Łupikasza1 1Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska Str. 60, 41-200 Sosnowiec, Poland 2Skywarn Poland Association, 29 Listopada Str. 18/19, 00-465 Warsaw, Poland E–mail address (*corresponding author): [email protected] ORCID iD: Wojciech Pilorz: https://orcid.org/0000-0001-9204-0680; Ewa Łupikasza: https://orcid.org/0000-0002-3910-9076 ______________________________________________________________________________________________________________________________________________ ABSTRACT Hail involving very large hailstones (maximum diameter ≥ 5 cm), is a rare but very hazardous phenomenon in Poland, and can be forecast using reflectivity signatures. Every year, Poland experiences from one to over a dozen storms with such large hailstones. Despite the current recommendations regarding polarimetric techniques used in hail risk monitoring, Poland does not have a fully polarimetric radar network. Therefore it is essential to check hail detection capabilities using only reflectivity techniques based on individual radar systems involving hail detection algorithms such as Waldvogel et al.