Heat-Killed M. Aurum Aogashima (Brand Name: Au+) Novel Food Ingredient Application

Total Page:16

File Type:pdf, Size:1020Kb

Heat-Killed M. Aurum Aogashima (Brand Name: Au+) Novel Food Ingredient Application Page 1 of 27 Heat-killed M. aurum Aogashima (Brand name: Au+) Novel food Ingredient Application By Solution Sciences Ltd. Page 2 of 27 1. Contents Table 1: Abbreviations ........................................................................................................................................ 3 Table 2: List of Annexes ...................................................................................................................................... 4 Table 3: List of References .................................................................................................................................. 5 1. Administrative Data .................................................................................................................................... 8 Notes on confidentiality .................................................................................................................................. 8 2. General Introduction and Description of Mycobacterium aurum Aogashima ............................................ 9 I The purpose of tHe novel food ingredient .............................................................................................. 9 3. Identification of essential information requirements ............................................................................... 11 4. Consultation of structured schemes ......................................................................................................... 12 I Structured ScHeme I: Specification of tHe Novel Food ingredient ........................................................ 12 i. Isolate origin, identity and pHysical properties ................................................................................. 12 ii. Isolate identification and cHaracterisation ........................................................................................ 13 iii. Genetic and microbiological identity of Mycobacterium aurum Aogashima .................................... 14 iv. Assessment of Mycobacterium aurum Aogashima isolate identity, cHaracterisation and microbial safety by microbiological techniques ........................................................................................................ 15 v. Specification and composition of Heat-killed M. aurum Aogashima ingredient ............................... 17 II Structured ScHeme II: Effect of tHe production process applied to tHe novel food ingredient. ........... 18 III Structured ScHeme III: History of tHe organism used as tHe source of tHe novel food ingredient ....... 20 IV– VIII Structured ScHemes: Not relevant to Heat killed M. aurum Aogashima (non-GMM) ...................... 22 IX Structured ScHeme IX: Anticipated intake/extent of use of tHe novel food ingredient ........................ 22 X Structured ScHeme X: Information from previous Human exposure to tHe novel food ingredient or its source ............................................................................................................................................................ 24 XI Structured ScHeme XI: Nutritional information on tHe novel food ingredient ..................................... 24 XII Structured ScHeme XII: Microbiological information on tHe novel food ingredient ............................. 24 XIII Structured ScHeme XIII: Toxicological information on the novel food ingredient ................................ 24 5. Evaluations and conclusion by applicant .................................................................................................. 27 Page 3 of 27 Table 1: Abbreviations ACNFP Advisory Committee on Novel Foods and Processes M. aurum Mycobacterium aurum ATCC American Type Culture Collection CFU Colony-Forming Units DNSIYC Diet and Nutrition Survey of Infants and Young CHildren EC European Community EFSA European Food Safety Authority EU European Union FAO Food and Agriculture Organisation GLP Good Laboratory Practice GMM Genetically Modified Microorganism GMO Genetically Modified Organism GMP Good Manufacturing Practice GVP Good PHarmacovigilance Practice HACCP Hazard Analysis & Critical Control Points HSE Health and Safety Executive NCTC National Collection of Type Cultures (UK) NDNS National Diet and Nutrition Survey NDNS1-3 National Diet and Nutrition Survey - Years 1-3 NF Novel Food NOAEL No Observed Adverse Effect Level NOEL No Observed Effect Level OECD Organisation for Economic Co-operation and Development OTC Over THe Counter PAMP Pathogen-Associated Molecular Pattern PCR Polymerase CHain Reaction QC Quality Control QPSNCTC Qualified Presumption of Safety National Collection of Type Cultures (UK) RASFFATCC Rapid Alert System For Food American Type Culture Collection TAMC Total Aerobic Microbial Counts TOC Total Organic Carbon TYMC Total Yeast & Mould Counts WGS Whole Genome Sequencing WHO World Health Organisation Page 4 of 27 Table 2: List of Annexes Annex Authors Year Full Title Study Code/Site FurtHer Details Annex 1 BioElpida / 2014 RNA16s tests results BEA-M.aurum-P14- Strain identification Bactup 14-04_27F CONFIDENTIAL Annex 2 Dr. L Rosa 2015 Mycobacterial genome Report Aurum CH- Strain identification Brunet assembly and R&D-01 CONFIDENTIAL Dr. D Simpson comparison: Mycobacterium aurum NCTC10437/ATCC2336 6 vs Mycobacterium aurum Aogashima Annex 3 Aurum 2015 Mycobacteria in water Aurum Switzerland Review of the natural Switzerland environments of mycobacteria Annex 4 BioElpida 2014 Manufacturing and BioElpida Manufacturing&QC quality control processes CONFIDENTIAL processes for Au+ Annex 5 BioElpida 2015 Certificates of analysis BioElpida Certificates of analysis of Au+ of 3 batches of Au+ CONFIDENTIAL Annex 6 Sequani 2015 14-Day oral dose range BIT0001 Toxicological data on finding test Heat killed M. aurum CONFIDENTIAL Aogashima Annex 7 Sequani 2015 SubcHronic 90-day oral BIT0002 Toxicological data on toxicity study Heat killed M. aurum CONFIDENTIAL Aogashima Annex 8 Sequani 2015 Bacterial reverse BIT0003 Toxicological data on mutation test Heat killed M. aurum CONFIDENTIAL Aogashima Annex 9 Covance 2015 Human LympHocyte BIT0004 Toxicological data on Micronucleus test Heat killed M. aurum CONFIDENTIAL Aogashima Annex 10 Aurum 2015 Hypersensitivity Aurum Switzerland Review of evidence Switzerland reactions induced by that mycobacteria environmental encountered in tHe mycobacteria natural environment do not cause hypersensitivity reactions Annex 11 References All scientific literature used in the dossier CONFIDENTIAL Page 5 of 27 Table 3: List of References Reference Authors Year Full Title Study Code/Site FurtHer Details Allergome Allergome allergome.org, http://www.allergo database database consulted on June me.org 2015 Brown et al. Brown K, 2012 Diet-induced dysbiosis Nutrient. 2012, 4, 2012 DeCoffe D, of the intestinal 1095-1119 Molcan E, microbiota and tHe Gibson DL. effects on immunity and disease Cambier et al. Cambier CJ, 2014 Host evasion and Cell. 2014 Dec 2014 Falkow S, exploitation scHemes 18;159(7):1497-509 Ramakrishnan L. of Mycobacterium tuberculosis. Dir. 2003/89 EU Commission 2003 Directive 2003/89/EC of the European Parliament & of tHe Council as regards indication of tHe ingredients present in foodstuffs Gey van 2006 Evolution and BMC Evol Biol. 2006 Gey van Pittius Pittius et al. expansion of tHe Nov 15;6:95. NC, Sampson 2006 Mycobacterium SL, Lee H, et al. tuberculosis PE and PPE multigene families and tHeir association witH tHe duplication of the ESAT-6 (esx) gene cluster regions. Gomez-SmitH 2015 Sulfate Reducing Environ Sci TecHnol. Gomez-SmitH et al., 2015 Bacteria and 2015 Jul CK., LaPara TM., Mycobacteria 21;49(14):8432-40 Hozalski RM, Dominate tHe Biofilm Communities in a Chloraminated Drinking Water Distribution System. Grange 2014 2014 Mycobacterium In Davies PDO, Grange JM. tuberculosis – the Gordon S, Davies G. organism. eds. Clinical Tuberculosis, 5tH Edition. London: CRC Press. Chp. 3, pp. 39-53. 2014 HSE Advisory 2013 The Approved List of Classifies Committee n Biological Agents Mycobacterium aurum Dangerous as Hazard Group 1 – PatHogens unlikely to cause human disease Page 6 of 27 Reference Authors Year Full Title Study Code/Site FurtHer Details KisHi 2011 KisHi Y. 2011 Chemistry of Proc Natl Acad Sci mycolactones, tHe U S A. 2011 Apr causative toxins of 26;108(17):6703-8. Buruli ulcer. Rahman et al. 2014 MBio. 2014 Nov Rahman SA, Comparative analyses 2014 4;5(6):e02020. SingH Y, KoHli S, of nonpathogenic, et al. opportunistic, and totally pathogenic mycobacteria reveal genomic and biochemical variabilities and highlight the survival attributes of Mycobacterium tuberculosis. Rook 2009 Rook GAW. 2009 Review series on Immunology Definition of helminths, immune 2009;126(1):3-11. pseudocommensal. modulation and tHe hygiene hypothesis: The broader implications of tHe hygiene hypothesis. Salminen and Saliminen S and 1992 Lactic acid bacteria in Digestive Diseases DeigHton, DeigHton M the gut in normal and 1992, 10, 227-238 1992 disordered states Simmon et al. Simmon KE, Low 2009 Phylogenetic Int J Syst Evol Phylogenetic analysis 2009 YY, Brown- analysis of Microbiol. of the type strain of Elliott BA, Mycobacterium aurum 2009;59:1371-5. Mycobacterium aurum Wallace RJ Jr, and Mycobacterium and identity of otHer Petti CA. neoaurum witH strains labeled redescription of Mycobacterium aurum M. aurum culture collection strains. Skerman et al. Skerman VBD, 1908 Approved lists of Int J Syst bacteriol The internationally 1980 McGowan V, bacterial names. 1980; 30: 225-420. approved bacterial SneatH PHA. names
Recommended publications
  • Mycobacterium Austroafricanum Sp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1983, p. 460-469 Vol. 33, No. 3 0020-7713/83/030460-10$02.00/0 Copyright 0 1983, International Union of Microbiological Societies Numerical Taxonomy of Rapidly Growing, Scotochromogenic Mycobacteria of the Mycobacterium parafortuitum Complex: Mycobacterium austroafricanum sp. nov. and Mycobacterium diernhoferi sp. nov., nom. rev. MICHIO TSUKAMURA,’* HERMINA J. VAN DER MEULEN,2 AND WILHELM 0. K. GRABOW3 National Chubu Hospital, Obu, Aichi, Japan 474l: South African Institute for Medical Research, Johannesburg 2001, South Africa2; and National Institute for Water Research, Pretoria 0002, South Africa3 A numerical analysis of phenetic data collected from rapidly growing, scotoch- romogenic mycobacterial strains isolated from water in South Africa and from strains of the taxa Mycobacterium parafortuitum, Mycobacterium aurum, Myco- bacterium neoaurum, and “Mycobacterium diernhoferi” indicated that all of these organisms belong to the Mycobacterium parqfortuitum complex. Our results also indicated that each of the taxa mentioned above is worthy of species status within the complex. The name Mycobacterium austroafricanum sp. nov. is proposed for the South African isolates, and the characteristics of these isolates are described; the type strain is E9789-SA12441 (= ATCC 33464). The name Mycobacterium diernhoferi is revived for the organism described originally by Bonicke and Juhasz in 1965; the type strain of this species is strain 41001 (= ATCC 19340). Three species of rapidly growing, scotochro- at -20°C and were subcultured at 6-month intervals. mogenic mycobacteria, Mycobacterium para- Only the strains deposited in the American Type fortuitum (i6), Mycobacte&m aurum (7), and Culture Collection, Rockville, Md., are shown in Mycobacteriurn neoaurum (9), have not been Table 1.
    [Show full text]
  • Mycobacterium Brumae Sp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1993, p. 405-413 Vol. 43, No. 3 0020-7713/93/030405-09$02.00/0 Copyright 0 1993, International Union of Microbiological Societies Mycobacterium brumae sp. nov., a Rapidly Growing, Nonphotochromogenic Mycobacterium M. LUQUIN,132*V. AUSINA,1,2 V. VINCENT-LEVY-FREBAULT,3 M. A. LvEELLE,4 F. BELDA,172 M. GARCiA-BARCEL0,172G. PRATS,' AND M. DAFFE4 Servicio de Microbiologia, Hospital de la Santa Cruz y San Pablo, Departamento de Genttica y Microbiolog*a, Universidad Autbnoma de Barcelona, 08025 Barcelona, ' and Servicio de Microbiolog'a, Hospital Germans Trias i Pujol, Departamento de Genetica y Microbiolog'a, Universidad Autonoma de Barcelona, 08915 Badalona, Spain, and Unite de la Tuberculose et des Mycobactkries, Institut Pasteur, 75724 Paris Cedex 15,3 and Departement III du LPTF du Centre National de la Recherche Scientifque et Universitk Paul Sabatier, 31062 Toulouse Ceda, France Strains of a new species of rapidly growing, nonphotochromogenic mycobacteria, Mycobacterium brumae, have been isolated from water, soil, and human sputum samples in Barcelona, Spain. The inclusion of this organism in the genus Mycobacterium is based on its acid-alcohol fastness, its DNA G+C content, its mycolate pattern, and its mycolate pyrolysis esters. A study of 11 strains showed that they form a homogeneous group with an internal phenotypic similarity value of 94.9 +, 3.7%. The results of a comparison with 39 other mycobacterial species and subspecies are also presented. DNA relatedness studies showed that the M. brumae strains studied form a single DNA hybridization group which is less than 30% related to 15 other species of the genus Mycobacterium.
    [Show full text]
  • The Impact of Chlorine and Chloramine on the Detection and Quantification of Legionella Pneumophila and Mycobacterium Spp
    The impact of chlorine and chloramine on the detection and quantification of Legionella pneumophila and Mycobacterium spp. Maura J. Donohue Ph.D. Office of Research and Development Center of Environmental Response and Emergency Response (CESER): Water Infrastructure Division (WID) Small Systems Webinar January 28, 2020 Disclaimer: The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. A Tale of Two Bacterium… Legionellaceae Mycobacteriaceae • Legionella (Genus) • Mycobacterium (Genus) • Gram negative bacteria • Nontuberculous Mycobacterium (NTM) (Gammaproteobacteria) • M. avium-intracellulare complex (MAC) • Flagella rod (2-20 µm) • Slow grower (3 to 10 days) • Gram positive bacteria • Majority of species will grow in free-living • Rod shape(1-10 µm) amoebae • Non-motile, spore-forming, aerobic • Aerobic, L-cysteine and iron salts are required • Rapid to Slow grower (1 week to 8 weeks) for in vitro growth, pH: 6.8 to 7, T: 25 to 43 °C • ~156 species • ~65 species • Some species capable of causing disease • Pathogenic or potentially pathogenic for human 3 NTM from Environmental Microorganism to Opportunistic Opponent Genus 156 Species Disease NTM =Nontuberculous Mycobacteria MAC = M. avium Complex Mycobacterium Mycobacterium duvalii Mycobacterium litorale Mycobacterium pulveris Clinically Relevant Species Mycobacterium abscessus Mycobacterium elephantis Mycobacterium llatzerense. Mycobacterium pyrenivorans, Mycobacterium africanum Mycobacterium europaeum Mycobacterium madagascariense Mycobacterium rhodesiae Mycobacterium agri Mycobacterium fallax Mycobacterium mageritense, Mycobacterium riyadhense Mycobacterium aichiense Mycobacterium farcinogenes Mycobacterium malmoense Mycobacterium rufum M. avium, M. intracellulare, Mycobacterium algericum Mycobacterium flavescens Mycobacterium mantenii Mycobacterium rutilum Mycobacterium alsense Mycobacterium florentinum. Mycobacterium marinum Mycobacterium salmoniphilum ( M. fortuitum, M.
    [Show full text]
  • Bacteremia Caused by Mycobacterium Neoaurum MALCOLM B
    JOURNAL OF CLINICAL MICROBIOLOGY, Apr. 1988, p. 762-764 Vol. 26, No. 4 0095-1137/88/040762-03$02.00/0 Copyright © 1988, American Society for Microbiology Bacteremia Caused by Mycobacterium neoaurum MALCOLM B. DAVISON,' JOSEPH G. McCORMACK,1* ZETA M. BLACKLOCK,2 DAVID J. DAWSON,2 MARTYN H. TILSE,3 AND FRANCIS B. CRIMMINS' Department of Medicine, University of Queensland, Mater Misericordiae Hospital, South Brisbane, Queensland 4101,' and Tuberculosis Laboratory, Laboratory of Microbiology and Pathology,2 and Department ofMicrobiology,3 Downloaded from Mater Misericordiae Adult Hospital, Brisbane, Queensland, Australia Received 18 September 1987/Accepted 14 December 1987 An immunocompromised patient with an indwelling Hickman catheter developed Mycobacterium neoaurum bacteremia. This rapidly growing mycobacterium was previously isolated from soil, dust, and water but has not been described as a human pathogen. The infection responded to therapy with cefoxitin and gentamicin. It was not necessary to remove the Hickman catheter. http://jcm.asm.org/ The first convincing evidence that mycobacteria other ethambutol per ml but not on MacConkey agar. Tests for than tubercle bacilli (MOTT) are potential pathogens was niacin production and p-aminosalicylate degradation were provided by Timpe and Runyon in 1954 (13). Since then, negative, while tests for nitrate reduction, Tween 80 hydrol- there has been increasing interest in their importance as the ysis (10 days), arylsulfatase (14 days), and iron uptake were causative agents of a variety of conditions, particularly in positive. Catalase activity was low. Glucose, fructose, ino- immunocompromised patients. The list of potential patho- sitol, and mannitol were utilized as carbon sources; sodium gens continues to grow.
    [Show full text]
  • Utilization of Molecular and Conventional Methods for the Identification of Nontuberculous Mycobacteria Isolated from Different Water Sources
    [Downloaded free from http://www.ijmyco.org on Monday, June 4, 2018, IP: 200.41.178.226] Original Article Utilization of Molecular and Conventional Methods for the Identification of Nontuberculous Mycobacteria Isolated from Different Water Sources Claudia Andrea Tortone1, Martín José Zumárraga2, Andrea Karina Gioffré2, Delia Susana Oriani1 1Laboratory of Mycobacteria, Faculty of Veterinary Sciences, National University of La Pampa, General Pico, La Pampa, 2Biotechnology Institute, National Institute of Agricultural Technology (INTA), Hurlingham, Buenos Aires, Argentina Abstract Background: The environment is the nontuberculous mycobacteria (NTM) reservoir, opportunistic pathogens of great diversity and ubiquity, which is observed in the constant description of new species capable of causing infection. Since its introduction, molecular methods are essential for species identification. Most comparative studies between molecular and conventional methods, have used isolated strains from clinical samples. Methods: The aim of this study was to evaluate the usefulness of molecular methods, especially the hsp65‑PRA (PCR‑Restriction Enzyme Analysis), and biochemical tests in the identification of NTM recovered from water of different origins, using the sequencing of 16S rRNA and hsp65 genes as assessment methods of the previous ones. Species identification was performed for all 56 NTM isolates what were recovered from 32 (42.1%) positive water samples, using conventional phenotypic methods, hsp65‑PRA, partial sequencing of 16S rRNA and sequencing
    [Show full text]
  • The Draft Genome of Mycobacterium Aurum, a Potential Model Organism for Investigating Drugs Against Mycobacterium Tuberculosis and Mycobacterium Leprae
    The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae Item Type Article Authors Phelan, Jody; Maitra, Arundhati; McNerney, Ruth; Nair, Mridul; Gupta, Antima; Coll, Francesc; Pain, Arnab; Bhakta, Sanjib; Clark, Taane G. Citation The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae 2015 International Journal of Mycobacteriology Eprint version Publisher's Version/PDF DOI 10.1016/j.ijmyco.2015.05.001 Publisher Medknow Journal International Journal of Mycobacteriology Rights Archived with thanks to International Journal of Mycobacteriology, Under a Creative Commons license, http:// creativecommons.org/licenses/by-nc-nd/4.0/ Download date 25/09/2021 10:36:51 Link to Item http://hdl.handle.net/10754/556900 International Journal of Mycobacteriology xxx (2015) xxx– xxx HOSTED BY Available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/IJMYCO The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and 5 Mycobacterium leprae Jody Phelan a,*, Arundhati Maitra b,1, Ruth McNerney a,1, Mridul Nair c, Antima Gupta b, Francesc Coll a, Arnab Pain c,2, Sanjib Bhakta b,2, Taane G. Clark a,d,2 a Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom b Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom c Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia d Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom ARTICLE INFO ABSTRACT Article history: Mycobacterium aurum (M.
    [Show full text]
  • Mycobacterial Infection in Farmed Turbot Scophthalmus Maximus
    DISEASES OF AQUATIC ORGANISMS Vol. 52: 87–91, 2002 Published November 7 Dis Aquat Org NOTE Mycobacterial infection in farmed turbot Scophthalmus maximus N. M. S. dos Santos1, 2,*, A. do Vale1, M. J. Sousa3, M. T. Silva1 1Institute for Molecular and Cell Biology, Rua do Campo Alegre no. 823, 4150-180 Porto, Portugal 2Novartis Animal Vaccines Ltd, 4 Warner Drive, Springwood Industrial Estate, Braintree, Essex CM7 2YW, United Kingdom 3Instituto Nacional de Saúde Dr. Ricardo Jorge, Laboratório de Tuberculose e Micobactérias, Largo 1º de Dezembro, 4000 Porto, Portugal ABSTRACT: Mycobacteriosis (piscine tuberculosis) has been kidney and liver (Frerichs 1993, Belas et al. 1995). reported to affect a wide range of freshwater and marine fish Mycobacterium marinum, M. fortuitum and M. che- species; however, this is the first report describing mycobac- lonae are the most common species found in fish terial infections in turbot Scophthalmus maximus. High num- bers of granulomas were initially observed in the organs of (Frerichs 1993, Belas et al. 1995). Recently, 2 new moribund farmed turbot. Bacteriological analysis of organs mycobacterium species infecting fish have been pro- with granulomas led to the isolation of Mycobacterium mar- posed (Heckert et al. 2001, Herbst et al. 2001). In addi- inum. Further analysis, to determine the prevalence of the tion, M. marinum, M. fortuitum and M. chelonae have infection in the farm and to identify its source, showed the occurrence of a dual infection by M. marinum and M. che- been reported as being capable of infecting warm- lonae. The presence of Nocardia sp. in some of the fish blooded vertebrates, including man (Frerichs 1993).
    [Show full text]
  • Prevalence of the Gene Lsr2 Among the Genus Mycobacterium and an Investigation Into Changes in Biofilm Formation When Inactivat
    Prevalence of the gene lsr2 among the genus Mycobacterium and an investigation into changes in biofilm formation when inactivating lsr2 regulated genes in Mycobacterium smegmatis A Thesis SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Wayne C. Gatlin III IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE John L. Dahl October, 2014 © Wayne Gatlin 2014 i Acknowledgements I would like to express my heartfelt thanks to my advisor Dr. John L. Dahl, whose guidance and sense of wonder invigorated my own scientific curiosities. Dr. Dahl showed me how science can be a multidisciplinary experience that feeds off all forms of the arts. I would also like to thank Dr. Dahl for showing me how to be a good teacher, of which he is the gold standard. ii Abstract There are many Mycobacterium species found throughout the world, some capable of causing human disease or industrial problems. Mycobacterium tuberculosis is arguably the most infamous, however, there are over 150 other species of Mycobacterium that have also been identified. Many mycobacterium are capable of forming biofilms, which are complex matrixes of bacterial cells that can adhere to surfaces. Recently, a strain of Mycobacterium smegmatis was characterized that lacked the ability to form biofilms. This phenotype has been linked to a mutation leading to the absence of the DNA bridging protein Lsr2. This study describes the further characterization of the role the lsr2 gene plays in biofilm formation in M. smegmatis and the prevalence of the gene among other species of the genus Mycobacterium. This study reports that lsr2 is found in 46 of 52 Mycobacterial species tested.
    [Show full text]
  • Susceptibility and Resistance Data
    toku-e logo For a complete list of references, please visit antibiotics.toku-e.com Isoniazid Microorganism Genus, Species, and Strain (if shown) Concentration Range (μg/ml)Susceptibility and Mycobacteria ? Minimum- ? Inhibitory Mycobacterium aurum >256 - ? Mycobacterium aurum (ATCC 23366) Concentration0.06 - ? (MIC) Data Mycobacterium aurum (Pasteur Institute 104482) 2 - ? Issue date 01/06/2020 Mycobacterium avium ? - ? Mycobacterium avium (ATCC 19421) 100 - ? Mycobacterium avium (NIHJ 1605) 1 - ? Mycobacterium bovis (ATCC 19210) 0.25 - ? Mycobacterium bovis (BCG + kas(A)) 0.07 - ? Mycobacterium bovis (BCG + kas(AB)) 0.05 - ? Mycobacterium bovis (BCG + kas(B)) 0.05 - ? Mycobacterium bovis (BCG) 0.06 - ? Mycobacterium chelonae (ATCC 14472) >32 - ? Mycobacterium fortuitum 0.25 - ? Mycobacterium fortuitum (ATCC 6841) 0.5 - ? Mycobacterium fortuitum (ATCC 6841) 0.5 - ? Mycobacterium fortuitum (ATCC 6841) 2 - ? Mycobacterium fortuitum (clinical isolate) 2 - ? Mycobacterium gordonae 8 - ? Mycobacterium intracellulare ? - ? Mycobacterium intracellulare (ATCC 1954 E-3) 8 - ? Mycobacterium kansasii (ATCC 12478) 2 - ? Mycobacterium kansasii (clinical isolate) 4 - ? Mycobacterium paratuberculosis (ATCC 27294 + H38Rv + isoniazid-susceptible + rifampin-su) 0.025 - 0.05 Mycobacterium phlei 2 - ? Mycobacterium phlei 4 - ? Mycobacterium phlei (ATCC 11758) 2 - ? Mycobacterium scrofulaceum (ATCC 19981) 0.5 - ? Mycobacterium scrofulaceum (clinical isolate) 2 - ? Mycobacterium smegmatis (ATCC 14468) 2 - ? Mycobacterium smegmatis (ATCC 14468) 8 - ? Mycobacterium
    [Show full text]
  • Efflux Pump Inhibitors Against Nontuberculous Mycobacteria
    International Journal of Molecular Sciences Review Efflux Pump Inhibitors against Nontuberculous Mycobacteria Laura Rindi Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, I-56127 Pisa, Italy; [email protected]; Tel.: +39-050-2213-688; Fax: +39-050-2213-682 Received: 28 May 2020; Accepted: 10 June 2020; Published: 12 June 2020 Abstract: Over the last years, nontuberculous mycobacteria (NTM) have emerged as important human pathogens. Infections caused by NTM are often difficult to treat due to an intrinsic multidrug resistance for the presence of a lipid-rich outer membrane, thus encouraging an urgent need for the development of new drugs for the treatment of mycobacterial infections. Efflux pumps (EPs) are important elements that are involved in drug resistance by preventing intracellular accumulation of antibiotics. A promising strategy to decrease drug resistance is the inhibition of EP activity by EP inhibitors (EPIs), compounds that are able to increase the intracellular concentration of antimicrobials. Recently, attention has been focused on identifying EPIs in mycobacteria that could be used in combination with drugs. The aim of the present review is to provide an overview of the current knowledge on EPs and EPIs in NTM and also, the effect of potential EPIs as well as their combined use with antimycobacterial drugs in various NTM species are described. Keywords: efflux pump inhibitor; nontuberculous mycobacteria; drug resistance; Mycobacterium avium complex; Mycobacterium abscessus 1. Introduction Infections by nontuberculous mycobacteria (NTM) represent a relevant problem for human health in many countries in the world. NTM, consisting of all Mycobacterium species except for Mycobacterium tuberculosis complex and Mycobacterium leprae, are a group of over 180 environmental species, generally endowed with low pathogenicity to humans [1,2].
    [Show full text]
  • Characterisation of a Putative Serine Protease Expressed in Vivo by Mycobacterium Avium Subsp
    Characterisation of a Putative Serine Protease Expressed in vivo by Mycobacterium avium subsp. paratuberculosis. Rona Mary Cameron Presented for the degree of PhD The University of Edinburgh 1996 a Table of Contents. Declaration .................................................................................................... Aknowledgements ..........................................................................................ii Abstract ......................................................................................................... Abbreviations ................................................................................................v Chapter 1 Introduction 1.1 The Mycobacterwceae ........................................................................1 1.1.1 The Cell Wall of Mycobacteria .............................................................1 1. 1.2 Mycobacterial Pathogens and Diseases .................................................. 5 1.2 The M. avium Complex (MAC) .......................................................... 6 1 .2.1 Members of the MAC ..........................................................................6 1.2.2 Molecular Characterisation of the MAC ................................................7 1 .2.3 Taxonomy of the MAC ........................................................................16 1.3 Known Genes and Proteins of M.a. avium, M.a. sil;'aticum and M.a. paratuberculosis ................................................................................... 19 1.4 Johne's Disease
    [Show full text]
  • Synthesis, Anti-Infective Evaluation, Cytotoxicity, and in Silico Studies
    Supporting Information Substituted N-(Pyrazin-2-yl)benzenesulfonamides; Synthesis, Anti-infective Evaluation, Cytotoxicity, and In Silico Studies. Ghada Bouz 1,*, Martin Juhás 1, Lluis Pausas Otero 1, Cristina Paredes de la Red 1, Ondřej Janďourek 1, Klára Konečná 1, Pavla Paterová 2, Vladimír Kubíček 1, Jiří Janoušek 1, Martin Doležal 1 and Jan Zitko 1,* 1 Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; [email protected] (M.J.); [email protected] (L.P.O.); [email protected] (C.P.R.); [email protected] (O.J.); [email protected] (K.K.); [email protected] (V.K.); [email protected] (J.J.); [email protected] (M.D.) 2 Department of Clinical Microbiology, University Hospital, Sokolská 581, 500 05 Hradec Králové, Czech Republic; [email protected] * Correspondence: [email protected] (G.B.); [email protected] (J.Z.); Tel.: +420-495-067-275 (G.B.); +420-495-067-272 (J.Z.) Biological assays In Vitro Activity Evaluation Against Mycobacterium Tuberculosis, Mycobacterium Kansasii, and Mycobacterium Avium A 96-well plate microdilution broth method was performed as described in Reference [1]. Tested strains Mycobacterium tuberculosis H37Rv CNCTC My 331/88 (ATCC 27294), M. kansasii CNCTC My 235/80 (ATCC 12478), and M. avium ssp. avium CNCTC My 80/72 (ATCC 15769) were obtained from the Czech National Collection of Type Cultures (CNCTC), National Institute of Public Health (Prague, Czech Republic). Middlebrook 7H9 broth of declared pH = 6.6 (Sigma-Aldrich) enriched with 0.4% of glycerol (Sigma-Aldrich) and 10% of OADC growth supplement (oleic acid, albumin, dextrose, catalase; Himedia, Mumbai, India) was used for cultivation.
    [Show full text]