algorithms Article Phase Congruential White Noise Generator Aleksei F. Deon 1 , Oleg K. Karaduta 2 and Yulian A. Menyaev 3,* 1 Department of Information and Control Systems, Bauman Moscow State Technical University, 2nd Baumanskaya St., 5/1, 105005 Moscow, Russia;
[email protected] 2 Biochemistry and Molecular Biology Department, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA;
[email protected] 3 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA * Correspondence:
[email protected] Abstract: White noise generators can use uniform random sequences as a basis. However, such a technology may lead to deficient results if the original sequences have insufficient uniformity or omissions of random variables. This article offers a new approach for creating a phase signal generator with an improved matrix of autocorrelation coefficients. As a result, the generated signals of the white noise process have absolutely uniform intensities at the eigen Fourier frequencies. The simulation results confirm that the received signals have an adequate approximation of uniform white noise. Keywords: pseudorandom number generator; congruential stochastic sequences; white noise; stochastic Fourier spectrum Citation: Deon, A.F.; Karaduta, O.K.; Menyaev, Y.A. Phase Congruential 1. Introduction White Noise Generator. Algorithms The concept of white noise realization corresponds to randomness in appearance 2021, 14, 118. and distribution of signals [1–4]. For audible signals, the conforming range is the band https://doi.org/10.3390/a14040118 of frequencies from 20 to 20,000 Hz. The randomness of such signals in this range is usually perceived by the human ear as a hissing sound with different volume intensities.