Monte Carlo *-Minimax Search

Total Page:16

File Type:pdf, Size:1020Kb

Monte Carlo *-Minimax Search Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Monte Carlo *-Minimax Search Marc Lanctot Abdallah Saffidine Department of Knowledge Engineering LAMSADE, Maastricht University, Netherlands Universite´ Paris-Dauphine, France [email protected] abdallah.saffi[email protected] Joel Veness and Christopher Archibald, Mark H. M. Winands Department of Computing Science Department of Knowledge Engineering University of Alberta, Canada Maastricht University, Netherlands fveness@cs., [email protected] [email protected] Abstract the search enhancements from the classic αβ literature can- not be easily adapted to MCTS. The classic algorithms for This paper introduces Monte Carlo *-Minimax stochastic games, EXPECTIMAX and *-Minimax (Star1 and Search (MCMS), a Monte Carlo search algorithm Star2), perform look-ahead searches to a limited depth. How- for turned-based, stochastic, two-player, zero-sum ever, the running time of these algorithms scales exponen- games of perfect information. The algorithm is de- tially in the branching factor at chance nodes as the search signed for the class of densely stochastic games; horizon is increased. Hence, their performance in large games that is, games where one would rarely expect to often depends heavily on the quality of the heuristic evalua- sample the same successor state multiple times at tion function, as only shallow searches are possible. any particular chance node. Our approach com- bines sparse sampling techniques from MDP plan- One way to handle the uncertainty at chance nodes would ning with classic pruning techniques developed for be forward pruning [Smith and Nau, 1993], but the perfor- adversarial expectimax planning. We compare and mance gain until now has been small [Schadd et al., 2009]. contrast our algorithm to the traditional *-Minimax Another way is to simply sample a single outcome when approaches, as well as MCTS enhanced with the encountering a chance node. This is common practice in Double Progressive Widening, on four games: Pig, MCTS when applied to stochastic games. However, the gen- EinStein Wurfelt¨ Nicht!, Can’t Stop, and Ra. Our eral performance of this method is unknown. Large stochas- results show that MCMS can be competitive with en- tic domains still pose a significant challenge. For instance, hanced MCTS variants in some domains, while con- MCTS is outperformed by *-Minimax in the game of Carcas- sistently outperforming the equivalent classic ap- sonne [Heyden, 2009]. Unfortunately, the literature on the ap- proaches given the same amount of thinking time. plication of Monte Carlo search methods to stochastic games is relatively small. 1 Introduction In this paper, we investigate the use of Monte Carlo sam- Monte Carlo sampling has recently become a popular tech- pling in *-Minimax search. We introduce a new algorithm, nique for online planning in large sequential games. For ex- Monte Carlo *-Minimax Search (MCMS), which samples a ample UCT and, more generally, Monte Carlo Tree Search subset of chance node outcomes in EXPECTIMAX and *- (MCTS) [Kocsis and Szepesvari,´ 2006; Coulom, 2007b] has Minimax in stochastic games. In particular, we describe a led to an increase in the performance of Computer Go play- sampling technique for chance nodes based on sparse sam- ers [Lee et al., 2009], and numerous extensions and appli- pling [Kearns et al., 1999] and show that MCMS approaches cations have since followed [Browne et al., 2012]. Initially, the optimal decision as the number of samples grows. We MCTS was applied to games lacking strong Minimax players, evaluate the practical performance of MCMS in four domains: but recently has been shown to compete against strong Mini- Pig, EinStein Wurfelt¨ Nicht!, Can’t Stop, and Ra. In Pig, we max players in such games [Winands et al., 2010; Ramanujan show that the estimates returned by MCMS have lower bias and Selman, 2011]. One class of games that has proven more and lower regret than the estimates returned by the classic resistant is stochastic games. Unlike classic games such as *-Minimax algorithms. Finally, we show that the addition of Chess and Go, stochastic game trees include chance nodes in sampling to *-Minimax can increase its performance from in- addition to decision nodes. How MCTS should account for ferior to competitive against state-of-the-art MCTS, and in the this added uncertainty remains unclear. Moreover, many of case of Ra, can even perform better than MCTS. 580 2 Background A direct computation of arg maxa2A(s) Vd(s; a) or A finite, two-player zero-sum game of perfect information arg mina2A(s) Vd(s; a) is equivalent to running the well EXPECTIMAX can be described as a tuple (S; T ; A; P; u1; s1), which we known algorithm [Michie, 1966]. The base now define. The state space S is a finite, non-empty set of EXPECTIMAX algorithm can be enhanced by a technique sim- states, with T ⊆ S denoting the finite, non-empty set of ilar to αβ pruning [Knuth and Moore, 1975] for determinis- terminal states. The action space A is a finite, non-empty tic game tree search. This involves correctly propagating the set of actions. The transition probability function P assigns [α; β] bounds and performing an additional pruning step at to each state-action pair (s; a) 2 S × A a probability mea- each chance node. This pruning step is based on the observa- sure over S that we denote by P(· j s; a). The utility function tion that if the minimax value has already been computed for ~ u1 : T 7! [vmin; vmax] ⊆ R gives the utility of player 1, with a subset of successors S ⊆ S, the depth d minimax value of vmin and vmax denoting the minimum and maximum possible state-action pair (s; a) must lie within utility, respectively. Since the game is zero-sum, the utility of Ld(s; a) ≤ Vd(s; a) ≤ Ud(s; a); player 2 in any state s 2 T is given by u2(s) := −u1(s). The player index function τ : S n T ! f1; 2g returns the player where to act in a given non-terminal state s. X 0 0 X 0 Each game starts in the initial state s1 with τ(s1) := 1, Ld(s; a) = P(s j s; a)Vd−1(s )+ P(s j s; a)vmin and proceeds as follows. For each time step t 2 N, player s02S~ s02SnS~ τ(st) selects an action at 2 A in state st, with the next state st+1 generated according to P(· j st; at). Player τ(st+1) then X 0 0 X 0 Ud(s; a) = P(s j s; a)Vd−1(s )+ P(s j s; a)vmax: chooses a next action and the cycle continues until some ter- s02S~ s02SnS~ minal state sT 2 T is reached. At this point player 1 and player 2 receive a utility of u1(sT ) and u2(sT ) respectively. These bounds form the basis of the pruning mechanisms in the *-Minimax [Ballard, 1983] family of algorithms. In the 2.1 Classic Game Tree Search Star1 algorithm, each s0 from the equations above represents We now describe the two main search paradigms for adversar- the state reached after a particular outcome is applied at a ial stochastic game tree search. We begin by first describing chance node following (s; a). In practice, Star1 maintains 0 0 classic stochastic search techniques, that differ from modern lower and upper bounds on Vd−1(s ) for each child s at approaches in that they do not use Monte Carlo sampling. chance nodes, using this information to stop the search when This requires recursively defining the minimax value of a it finds a proof that any future search is pointless. A worked state s 2 S, which is given by example of how these cuts occur in *-Minimax can be found in [Lanctot et al., 2013]. 8 max P P(s0 j s; a) V (s0) if s2 = T ; τ(s) = 1 > a2A s02S < 0 0 V (s) = min P P(s j s; a) V (s ) if s2 = T ; τ(s) = 2 1 Star1(s; a; d; α; β) a2A 0 > s 2S 2 if d = 0 or s 2 T then return h(s) :> u1(s) otherwise. 3 Note that here we always treat player 1 as the player maxi- 4 else 5 O genOutcomeSet(s, a) mizing u1(s) (Max), and player 2 as the player minimizing u (s) (Min). In most large games, computing the minimax 6 for o 2 O do 1 0 value for a given game state is intractable. Because of this, an 7 α childAlpha(o, α) 0 often used approximation is to instead compute the depth d 8 β childBeta (o, β) 0 minimax value. This requires limiting the recursion to some 9 s actionChanceEvent (s, a, o) 0 0 0 10 v alphabeta1(s , d − 1, α , β ) fixed depth d 2 N and applying a heuristic evaluation func- tion when this depth limit is reached. Thus given a heuristic 11 ol v; ou v 0 12 if v ≥ β then return pess(O) evaluation function h : S! [vmin; vmax] ⊆ R defined with respect to player 1 that satisfies the requirement h(s) = u (s) 13 1 0 when s 2 T , the depth d minimax value is defined recursively 14 if v ≤ α then return opti(O) by 15 8 16 return Vd(s; a) max Vd(s; a) if d > 0, s 62 T , and τ(s) = 1 Algorithm 1: Star1 <> a2A Vd(s) = min Vd(s; a) if d > 0, s 62 T , and τ(s) = 2 > a2A : h(s) otherwise, The algorithm is summarized in Algorithm 1. The alphabeta1 procedure recursively calls Star1.
Recommended publications
  • Monte-Carlo Tree Search Solver
    Monte-Carlo Tree Search Solver Mark H.M. Winands1, Yngvi BjÄornsson2, and Jahn-Takeshi Saito1 1 Games and AI Group, MICC, Universiteit Maastricht, Maastricht, The Netherlands fm.winands,[email protected] 2 School of Computer Science, Reykjav¶³kUniversity, Reykjav¶³k,Iceland [email protected] Abstract. Recently, Monte-Carlo Tree Search (MCTS) has advanced the ¯eld of computer Go substantially. In this article we investigate the application of MCTS for the game Lines of Action (LOA). A new MCTS variant, called MCTS-Solver, has been designed to play narrow tacti- cal lines better in sudden-death games such as LOA. The variant di®ers from the traditional MCTS in respect to backpropagation and selection strategy. It is able to prove the game-theoretical value of a position given su±cient time. Experiments show that a Monte-Carlo LOA program us- ing MCTS-Solver defeats a program using MCTS by a winning score of 65%. Moreover, MCTS-Solver performs much better than a program using MCTS against several di®erent versions of the world-class ®¯ pro- gram MIA. Thus, MCTS-Solver constitutes genuine progress in using simulation-based search approaches in sudden-death games, signi¯cantly improving upon MCTS-based programs. 1 Introduction For decades ®¯ search has been the standard approach used by programs for playing two-person zero-sum games such as chess and checkers (and many oth- ers). Over the years many search enhancements have been proposed for this framework. However, in some games where it is di±cult to construct an accurate positional evaluation function (e.g., Go) the ®¯ approach was hardly success- ful.
    [Show full text]
  • Adversarial Search
    Adversarial Search In which we examine the problems that arise when we try to plan ahead in a world where other agents are planning against us. Outline 1. Games 2. Optimal Decisions in Games 3. Alpha-Beta Pruning 4. Imperfect, Real-Time Decisions 5. Games that include an Element of Chance 6. State-of-the-Art Game Programs 7. Summary 2 Search Strategies for Games • Difference to general search problems deterministic random – Imperfect Information: opponent not deterministic perfect Checkers, Backgammon, – Time: approximate algorithms information Chess, Go Monopoly incomplete Bridge, Poker, ? information Scrabble • Early fundamental results – Algorithm for perfect game von Neumann (1944) • Our terminology: – Approximation through – deterministic, fully accessible evaluation information Zuse (1945), Shannon (1950) Games 3 Games as Search Problems • Justification: Games are • Games as playground for search problems with an serious research opponent • How can we determine the • Imperfection through actions best next step/action? of opponent: possible results... – Cutting branches („pruning“) • Games hard to solve; – Evaluation functions for exhaustive: approximation of utility – Average branching factor function chess: 35 – ≈ 50 steps per player ➞ 10154 nodes in search tree – But “Only” 1040 allowed positions Games 4 Search Problem • 2-player games • Search problem – Player MAX – Initial state – Player MIN • Board, positions, first player – MAX moves first; players – Successor function then take turns • Lists of (move,state)-pairs – Goal test
    [Show full text]
  • Αβ-Based Play-Outs in Monte-Carlo Tree Search
    αβ-based Play-outs in Monte-Carlo Tree Search Mark H.M. Winands Yngvi Bjornsson¨ Abstract— Monte-Carlo Tree Search (MCTS) is a recent [9]. In the context of game playing, Monte-Carlo simulations paradigm for game-tree search, which gradually builds a game- were first used as a mechanism for dynamically evaluating tree in a best-first fashion based on the results of randomized the merits of leaf nodes of a traditional αβ-based search [10], simulation play-outs. The performance of such an approach is highly dependent on both the total number of simulation play- [11], [12], but under the new paradigm MCTS has evolved outs and their quality. The two metrics are, however, typically into a full-fledged best-first search procedure that replaces inversely correlated — improving the quality of the play- traditional αβ-based search altogether. MCTS has in the past outs generally involves adding knowledge that requires extra couple of years substantially advanced the state-of-the-art computation, thus allowing fewer play-outs to be performed in several game domains where αβ-based search has had per time unit. The general practice in MCTS seems to be more towards using relatively knowledge-light play-out strategies for difficulties, in particular computer Go, but other domains the benefit of getting additional simulations done. include General Game Playing [13], Amazons [14] and Hex In this paper we show, for the game Lines of Action (LOA), [15]. that this is not necessarily the best strategy. The newest version The right tradeoff between search and knowledge equally of our simulation-based LOA program, MC-LOAαβ , uses a applies to MCTS.
    [Show full text]
  • Artificial Intelligence Spring 2019 Homework 2: Adversarial Search
    Artificial Intelligence Spring 2019 Homework 2: Adversarial Search PROGRAMMING In this assignment, you will create an adversarial search agent to play the 2048-puzzle game. A demo of ​ ​ the game is available here: gabrielecirulli.github.io/2048. ​ ​ I. 2048 As A Two-Player Game ​ II. Choosing a Search Algorithm: Expectiminimax ​ III. Using The Skeleton Code ​ IV. What You Need To Submit ​ V. Important Information ​ VI. Before You Submit ​ I. 2048 As A Two-Player Game 2048 is played on a 4×4 grid with numbered tiles which can slide up, down, left, or right. This game can ​ ​ be modeled as a two player game, in which the computer AI generates a 2- or 4-tile placed randomly on the board, and the player then selects a direction to move the tiles. Note that the tiles move until they either (1) collide with another tile, or (2) collide with the edge of the grid. If two tiles of the same number collide in a move, they merge into a single tile valued at the sum of the two originals. The resulting tile cannot merge with another tile again in the same move. Usually, each role in a two-player games has a similar set of moves to choose from, and similar objectives (e.g. chess). In 2048 however, the player roles are inherently asymmetric, as the Computer AI ​ ​ places tiles and the Player moves them. Adversarial search can still be applied! Using your previous experience with objects, states, nodes, functions, and implicit or explicit search trees, along with our skeleton code, focus on optimizing your player algorithm to solve 2048 as efficiently and consistently ​ ​ as possible.
    [Show full text]
  • Smartk: Efficient, Scalable and Winning Parallel MCTS
    SmartK: Efficient, Scalable and Winning Parallel MCTS Michael S. Davinroy, Shawn Pan, Bryce Wiedenbeck, and Tia Newhall Swarthmore College, Swarthmore, PA 19081 ACM Reference Format: processes. Each process constructs a distinct search tree in Michael S. Davinroy, Shawn Pan, Bryce Wiedenbeck, and Tia parallel, communicating only its best solutions at the end of Newhall. 2019. SmartK: Efficient, Scalable and Winning Parallel a number of rollouts to pick a next action. This approach has MCTS. In SC ’19, November 17–22, 2019, Denver, CO. ACM, low communication overhead, but significant duplication of New York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnneffort across processes. 1 INTRODUCTION Like root parallelization, our SmartK algorithm achieves low communication overhead by assigning independent MCTS Monte Carlo Tree Search (MCTS) is a popular algorithm tasks to processes. However, SmartK dramatically reduces for game playing that has also been applied to problems as search duplication by starting the parallel searches from many diverse as auction bidding [5], program analysis [9], neural different nodes of the search tree. Its key idea is it uses nodes’ network architecture search [16], and radiation therapy de- weights in the selection phase to determine the number of sign [6]. All of these domains exhibit combinatorial search processes (the amount of computation) to allocate to ex- spaces where even moderate-sized problems can easily ex- ploring a node, directing more computational effort to more haust computational resources, motivating the need for par- promising searches. allel approaches. SmartK is our novel parallel MCTS algo- Our experiments with an MPI implementation of SmartK rithm that achieves high performance on large clusters, by for playing Hex show that SmartK has a better win rate and adaptively partitioning the search space to efficiently utilize scales better than other parallelization approaches.
    [Show full text]
  • Monte-Carlo Tree Search
    Monte-Carlo Tree Search PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Maastricht, op gezag van de Rector Magnificus, Prof. mr. G.P.M.F. Mols, volgens het besluit van het College van Decanen, in het openbaar te verdedigen op donderdag 30 september 2010 om 14:00 uur door Guillaume Maurice Jean-Bernard Chaslot Promotor: Prof. dr. G. Weiss Copromotor: Dr. M.H.M. Winands Dr. B. Bouzy (Universit´e Paris Descartes) Dr. ir. J.W.H.M. Uiterwijk Leden van de beoordelingscommissie: Prof. dr. ir. R.L.M. Peeters (voorzitter) Prof. dr. M. Muller¨ (University of Alberta) Prof. dr. H.J.M. Peters Prof. dr. ir. J.A. La Poutr´e (Universiteit Utrecht) Prof. dr. ir. J.C. Scholtes The research has been funded by the Netherlands Organisation for Scientific Research (NWO), in the framework of the project Go for Go, grant number 612.066.409. Dissertation Series No. 2010-41 The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch Research School for Information and Knowledge Systems. ISBN 978-90-8559-099-6 Printed by Optima Grafische Communicatie, Rotterdam. Cover design and layout finalization by Steven de Jong, Maastricht. c 2010 G.M.J-B. Chaslot. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronically, mechanically, photocopying, recording or otherwise, without prior permission of the author. Preface When I learnt the game of Go, I was intrigued by the contrast between the simplicity of its rules and the difficulty to build a strong Go program.
    [Show full text]
  • CS234 Notes - Lecture 14 Model Based RL, Monte-Carlo Tree Search
    CS234 Notes - Lecture 14 Model Based RL, Monte-Carlo Tree Search Anchit Gupta, Emma Brunskill June 14, 2018 1 Introduction In this lecture we will learn about model based RL and simulation based tree search methods. So far we have seen methods which attempt to learn either a value function or a policy from experience. In contrast model based approaches first learn a model of the world from experience and then use this for planning and acting. Model-based approaches have been shown to have better sample efficiency and faster convergence in certain settings. We will also have a look at MCTS and its variants which can be used for planning given a model. MCTS was one of the main ideas behind the success of AlphaGo. Figure 1: Relationships among learning, planning, and acting 2 Model Learning By model we mean a representation of an MDP < S; A; R; T; γ> parametrized by η. In the model learning regime we assume that the state and action space S; A are known and typically we also assume conditional independence between state transitions and rewards i.e P [st+1; rt+1jst; at] = P [st+1jst; at]P [rt+1jst; at] Hence learning a model consists of two main parts the reward function R(:js; a) and the transition distribution P (:js; a). k k k k K Given a set of real trajectories fSt ;At Rt ; :::; ST gk=1 model learning can be posed as a supervised learning problem. Learning the reward function R(s; a) is a regression problem whereas learning the transition function P (s0js; a) is a density estimation problem.
    [Show full text]
  • Best-First and Depth-First Minimax Search in Practice
    Best-First and Depth-First Minimax Search in Practice Aske Plaat, Erasmus University, [email protected] Jonathan Schaeffer, University of Alberta, [email protected] Wim Pijls, Erasmus University, [email protected] Arie de Bruin, Erasmus University, [email protected] Erasmus University, University of Alberta, Department of Computer Science, Department of Computing Science, Room H4-31, P.O. Box 1738, 615 General Services Building, 3000 DR Rotterdam, Edmonton, Alberta, The Netherlands Canada T6G 2H1 Abstract Most practitioners use a variant of the Alpha-Beta algorithm, a simple depth-®rst pro- cedure, for searching minimax trees. SSS*, with its best-®rst search strategy, reportedly offers the potential for more ef®cient search. However, the complex formulation of the al- gorithm and its alleged excessive memory requirements preclude its use in practice. For two decades, the search ef®ciency of ªsmartº best-®rst SSS* has cast doubt on the effectiveness of ªdumbº depth-®rst Alpha-Beta. This paper presents a simple framework for calling Alpha-Beta that allows us to create a variety of algorithms, including SSS* and DUAL*. In effect, we formulate a best-®rst algorithm using depth-®rst search. Expressed in this framework SSS* is just a special case of Alpha-Beta, solving all of the perceived drawbacks of the algorithm. In practice, Alpha-Beta variants typically evaluate less nodes than SSS*. A new instance of this framework, MTD(ƒ), out-performs SSS* and NegaScout, the Alpha-Beta variant of choice by practitioners. 1 Introduction Game playing is one of the classic problems of arti®cial intelligence.
    [Show full text]
  • General Branch and Bound, and Its Relation to A* and AO*
    ARTIFICIAL INTELLIGENCE 29 General Branch and Bound, and Its Relation to A* and AO* Dana S. Nau, Vipin Kumar and Laveen Kanal* Laboratory for Pattern Analysis, Computer Science Department, University of Maryland College Park, MD 20742, U.S.A. Recommended by Erik Sandewall ABSTRACT Branch and Bound (B&B) is a problem-solving technique which is widely used for various problems encountered in operations research and combinatorial mathematics. Various heuristic search pro- cedures used in artificial intelligence (AI) are considered to be related to B&B procedures. However, in the absence of any generally accepted terminology for B&B procedures, there have been widely differing opinions regarding the relationships between these procedures and B &B. This paper presents a formulation of B&B general enough to include previous formulations as special cases, and shows how two well-known AI search procedures (A* and AO*) are special cases o,f this general formulation. 1. Introduction A wide class of problems arising in operations research, decision making and artificial intelligence can be (abstractly) stated in the following form: Given a (possibly infinite) discrete set X and a real-valued objective function F whose domain is X, find an optimal element x* E X such that F(x*) = min{F(x) I x ~ X}) Unless there is enough problem-specific knowledge available to obtain the optimum element of the set in some straightforward manner, the only course available may be to enumerate some or all of the elements of X until an optimal element is found. However, the sets X and {F(x) [ x E X} are usually tThis work was supported by NSF Grant ENG-7822159 to the Laboratory for Pattern Analysis at the University of Maryland.
    [Show full text]
  • Trees, Binary Search Trees, Heaps & Applications Dr. Chris Bourke
    Trees Trees, Binary Search Trees, Heaps & Applications Dr. Chris Bourke Department of Computer Science & Engineering University of Nebraska|Lincoln Lincoln, NE 68588, USA [email protected] http://cse.unl.edu/~cbourke 2015/01/31 21:05:31 Abstract These are lecture notes used in CSCE 156 (Computer Science II), CSCE 235 (Dis- crete Structures) and CSCE 310 (Data Structures & Algorithms) at the University of Nebraska|Lincoln. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License 1 Contents I Trees4 1 Introduction4 2 Definitions & Terminology5 3 Tree Traversal7 3.1 Preorder Traversal................................7 3.2 Inorder Traversal.................................7 3.3 Postorder Traversal................................7 3.4 Breadth-First Search Traversal..........................8 3.5 Implementations & Data Structures.......................8 3.5.1 Preorder Implementations........................8 3.5.2 Inorder Implementation.........................9 3.5.3 Postorder Implementation........................ 10 3.5.4 BFS Implementation........................... 12 3.5.5 Tree Walk Implementations....................... 12 3.6 Operations..................................... 12 4 Binary Search Trees 14 4.1 Basic Operations................................. 15 5 Balanced Binary Search Trees 17 5.1 2-3 Trees...................................... 17 5.2 AVL Trees..................................... 17 5.3 Red-Black Trees.................................. 19 6 Optimal Binary Search Trees 19 7 Heaps 19
    [Show full text]
  • Parallel Technique for the Metaheuristic Algorithms Using Devoted Local Search and Manipulating the Solutions Space
    applied sciences Article Parallel Technique for the Metaheuristic Algorithms Using Devoted Local Search and Manipulating the Solutions Space Dawid Połap 1,* ID , Karolina K˛esik 1, Marcin Wo´zniak 1 ID and Robertas Damaševiˇcius 2 ID 1 Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland; [email protected] (K.K.); [email protected] (M.W.) 2 Department of Software Engineering, Kaunas University of Technology, Studentu 50, LT-51368, Kaunas, Lithuania; [email protected] * Correspondence: [email protected] Received: 16 December 2017; Accepted: 13 February 2018 ; Published: 16 February 2018 Abstract: The increasing exploration of alternative methods for solving optimization problems causes that parallelization and modification of the existing algorithms are necessary. Obtaining the right solution using the meta-heuristic algorithm may require long operating time or a large number of iterations or individuals in a population. The higher the number, the longer the operation time. In order to minimize not only the time, but also the value of the parameters we suggest three proposition to increase the efficiency of classical methods. The first one is to use the method of searching through the neighborhood in order to minimize the solution space exploration. Moreover, task distribution between threads and CPU cores can affect the speed of the algorithm and therefore make it work more efficiently. The second proposition involves manipulating the solutions space to minimize the number of calculations. In addition, the third proposition is the combination of the previous two. All propositions has been described, tested and analyzed due to the use of various test functions.
    [Show full text]
  • Backtracking Search (Csps) ■Chapter 5 5.3 Is About Local Search Which Is a Very Useful Idea but We Won’T Cover It in Class
    CSC384: Intro to Artificial Intelligence Backtracking Search (CSPs) ■Chapter 5 5.3 is about local search which is a very useful idea but we won’t cover it in class. 1 Hojjat Ghaderi, University of Toronto Constraint Satisfaction Problems ● The search algorithms we discussed so far had no knowledge of the states representation (black box). ■ For each problem we had to design a new state representation (and embed in it the sub-routines we pass to the search algorithms). ● Instead we can have a general state representation that works well for many different problems. ● We can build then specialized search algorithms that operate efficiently on this general state representation. ● We call the class of problems that can be represented with this specialized representation CSPs---Constraint Satisfaction Problems. ● Techniques for solving CSPs find more practical applications in industry than most other areas of AI. 2 Hojjat Ghaderi, University of Toronto Constraint Satisfaction Problems ●The idea: represent states as a vector of feature values. We have ■ k-features (or variables) ■ Each feature takes a value. Domain of possible values for the variables: height = {short, average, tall}, weight = {light, average, heavy}. ●In CSPs, the problem is to search for a set of values for the features (variables) so that the values satisfy some conditions (constraints). ■ i.e., a goal state specified as conditions on the vector of feature values. 3 Hojjat Ghaderi, University of Toronto Constraint Satisfaction Problems ●Sudoku: ■ 81 variables, each representing the value of a cell. ■ Values: a fixed value for those cells that are already filled in, the values {1-9} for those cells that are empty.
    [Show full text]