Application of Machine Learning in High Frequency Trading of Stocks

Total Page:16

File Type:pdf, Size:1020Kb

Application of Machine Learning in High Frequency Trading of Stocks International Journal of Scientific & Engineering Research Volume 10, Issue 5, May-2019 1592 ISSN 2229-5518 Application of Machine Learning in High Frequency Trading of Stocks Obi Bertrand Obi Worldquant University 201 St. Charles Avenue, Suite 2500 New Orleans, LA 70170, USA [email protected] Abstract Algorithmic trading strategies have traditionally been centered on follwing the market trends and the use of technical indicators. Over the years High Frequency algorithmic Trading has been left only in the hands of institutional players with deep pockets and lots of assets under management, despite huge returns involved. In this project webuilt trading strategies by applying Machine Learning models to technical indicators based on High Frequency Stock data. The result is an automated trading system which when applied to any stock could generate returns which are ten times higher than the market returns without significant increase in volatility. With advancement in technology High Frequency Algorithmic trading can be undertaken even by individuals or retail traders with moderate initial investment and technical skills. Keywords:Machine Lerning; Prediction of stock prices movements; Classification reports; Algorithmic trading; High frequency trading; Key performace indicators IJSER 1. Introduction Not too long ago, Algorithmic Trading was only available for institutional players with deep pockets and lots of assets under management. Recent developments in the areas of open source, open data, cloud computing and storage as well as online trading platforms have leveled the playing field for smaller institutions and individual traders, making it possible to venture in this fascinating discipline with only a modern notebook and an Internet connection. Nowadays, Python and its eco-system of powerful packages is the technology platform of choice for algorithmic trading. Among others, Python allows you to do efficient data analytics (with e.g. numpy, pandas), to apply machine learning to stock market prediction (with e.g. scikit-learn) or even make use of Google’s deep learning technology (with tensorflow) and Microsoft’s CNTK. Algorithmic trading basically refers to the trading of financial instruments based on some formal algorithm. An algorithm is a set of operations (mathematical, technical) to be conducted in a certain sequence to achieve a certain goal. For example, there are mathematical algorithms to solve a Rubik’s cube (The Mathematics of the Rubik’s Cube or Algorithms for Solving Rubik’s Cube). Such an algorithm can perfectly solve the problem at hand via a step-by-step procedure. Another example is algorithms for finding the root(s) of an equation (if it (they) exist(s) at all). In that sense, the objective of a mathematical algorithm is often well specified and an optimal solution is often expected IJSER © 2019 http://www.ijser.org International Journal of Scientific & Engineering Research Volume 10, Issue 5, May-2019 1593 ISSN 2229-5518 High-frequency trading(HFT)is a type of algorithmic trading characterized by complex computer algorithms that trade in and out of positions in fractions of seconds, leveraging arbitrage strategies in order to profit from the public markets. Commonly, traders take advantage of the penny spread between the bids-ask on equities. For the typical retail trader, this would seem redundant and the pay-off would be minuscule. For HFTs, the profit from the spread accumulates and as thousands of trades are executed, there are millions of dollars to be made [1]. Traditionally, financial markets operated on a quote-driven process where a few market makers provided the sole liquidity and prices for Financial Assets. Recently, major developments have beenmade to automate the Financial Markets which have led to many trading firms using computer algorithms to trade the Assets. High Frequency Trading (HFT), in particular, has been a major topic due to the features that distinguishes it from electronic and manual trading. This includes the extremely high speed of execution (microseconds), multiple executions per session, and very short holding periods (usually less than a day). 1.1. Problem statement Time series data in financial markets are highly nonlinear, nonstationary and noisy in nature. Traditional models based on statistical methods, such as the Autoregressive Moving Average (ARMA) model, Autoregressive Integrated Moving Average (ARIMA) model, and General Autoregressive Conditional Heteroskedasticity (GARCH) model, suffer from limitations due to their linearity assumption. Predicting how the stock market will perform is one of the most difficult things to do. There are so many factors involved in the prediction such as; physical factors, psychological, rational and irrational behaviour, etc. All these aspects combine to make share prices volatile and very difficult to predict with a high degree of accuracy. Waren Buffet states that: “Forecasts may tell you a great deal about the forecaster; they tell you nothing about the future.” Hence finding the right algorithm to automatically and successfully predict and trade in financial markets is the Holy Grail in finance. 1.2. Project Objectives The main IJSERobjective of this project is to develop a High Frequency Trading System which uses Machine Learning to predict the movements of stock market prices with reasonable level of accuracyand to trade the stock with simple trading strategy to generate adequate performance. Other objectives include the following: 1. Comparative analysis of Machine learning Algorithims on High Frequency Stock data to determine algorithms with high predictive power for stock price movements 2. Perform technical analyses as features to the Machine Learning models in the High frequency Trading System 3. Generate and track adequate performance from the High frequency Trading System. 4. Add to the elaborate body of literature on application of Machine learning to Finance and High Frequency Trading 1.3. Hypothesis Machine Learning Algorithms cannot predict stock price movement with reasonable amount of certainty in High Frequency Trading IJSER © 2019 http://www.ijser.org International Journal of Scientific & Engineering Research Volume 10, Issue 5, May-2019 1594 ISSN 2229-5518 2. Literature Review Several authors have employed Machine learning technologies in predicting and trading stock markets. The following Algorithms have been used in various situations: Because of their ability to model nonlinear relationships without pre-specification during the modeling process, neural networks (NNs) have become a popular method in financial time-series forecasting. NNs also offer huge flexibility in the type of architecture of the model, in terms of number of hidden nodes and layers. Indeed, Pekkaya and Hamzacebi compare the results from using a linear regression versus a NN model to forecast macro variables and show that the NN gives much better results [3].Many studies have used NNs and shown promising results in the financial markets. Grudnitski and Osburn implemented NNs to forecast S&P500 and Gold futures price directions and found they were able to correctly predict the direction of monthly price changes 75% and 61% respectively [4]. Another study showed that a NN-based model leads to higher arbitrage profits compared to cost of carry models [5]. Phua, Ming and Lin implement a NN using Singapore’s stock market index and show a forecasting accuracy of 81% [6]. Another popular machine learning classification technique that does not require any domain knowledge or parameter setting is the decision tree. It also often offers a better visually interpretable model compared to NN, as the nodes in the tree can be easily understood. The simplest type of decision tree model is the classification and regression tree (CART). Sorensen et al. show that CART decision trees perform better than single-factor models based on the same variables in picking stock portfolios [7]. Another study found that a boosted alternating decision tree with expert weighing generated abnormal returns for the S&P500 index during the test period [8]. To improve accuracy, some studies used the random forest algorithm for classification, Booth et al. show that a regency-weighted ensemble of random forests produce superior results when analyzed on a large sample of stocks from the DAX in terms of both profitability and prediction accuracy compared with other ensemble techniques [9]. Similarly, a gradient boosted random forest model applied to Singapore’s stock market was able to generate excess returns compared with a buy-and-hold strategy [10]. Some recent researches combine decision tree analysis with evolutionary algorithms to allow the model to adapt to changing market conditions. Hsu et al. present constraintbased evolutionaryIJSER classification trees (CECT) and show strong predictability of a company’s financial performance [11]. Support Vector Machines (SVM) is also often used in predicting market behaviors. Huang et al. compare SVM with other classification methods (random Walk, linear discriminant analysis, quadratic discriminant analysis and elman backpropagation neural networks) and finds that SVM performs the best in forecasting weekly movements of the Nikkei 225 index [12]. Nair et al. propose a system that is a genetic algorithm optimized decision tree support vector machine hybrid and validate its performance on the BSE-Sensex and found that its predictive accuracy is better than that of both a NN and Naive bayes based model [13] While some studies
Recommended publications
  • Tradescript.Pdf
    Service Disclaimer This manual was written for use with the TradeScript™ language. This manual and the product described in it are copyrighted, with all rights reserved. This manual and the TradeScript™ outputs (charts, images, data, market quotes, and other features belonging to the product) may not be copied, except as otherwise provided in your license or as expressly permitted in writing by Modulus Financial Engineering, Inc. Export of this technology may be controlled by the United States Government. Diversion contrary to U.S. law prohibited. Copyright © 2006 by Modulus Financial Engineering, Inc. All rights reserved. Modulus Financial Engineering and TradeScript™ are registered trademarks of Modulus Financial Engineering, Inc. in the United States and other countries. All other trademarks and service marks are the property of their respective owners. Use of the TradeScript™ product and other services accompanying your license and its documentation are governed by the terms set forth in your license. Such use is at your sole risk. The service and its documentation (including this manual) are provided "AS IS" and without warranty of any kind and Modulus Financial Engineering, Inc. AND ITS LICENSORS (HEREINAFTER COLLECTIVELY REFERRED TO AS “MFE”) EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND AGAINST INFRINGEMENT. MFE DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SERVICE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SERVICE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE SERVICE OR ERRORS IN THE DATA WILL BE CORRECTED. FURTHERMORE, MFE DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE SERVICE OR ITS DOCUMENTATION IN TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.
    [Show full text]
  • The Future of Computer Trading in Financial Markets an International Perspective
    The Future of Computer Trading in Financial Markets An International Perspective FINAL PROJECT REPORT This Report should be cited as: Foresight: The Future of Computer Trading in Financial Markets (2012) Final Project Report The Government Office for Science, London The Future of Computer Trading in Financial Markets An International Perspective This Report is intended for: Policy makers, legislators, regulators and a wide range of professionals and researchers whose interest relate to computer trading within financial markets. This Report focuses on computer trading from an international perspective, and is not limited to one particular market. Foreword Well functioning financial markets are vital for everyone. They support businesses and growth across the world. They provide important services for investors, from large pension funds to the smallest investors. And they can even affect the long-term security of entire countries. Financial markets are evolving ever faster through interacting forces such as globalisation, changes in geopolitics, competition, evolving regulation and demographic shifts. However, the development of new technology is arguably driving the fastest changes. Technological developments are undoubtedly fuelling many new products and services, and are contributing to the dynamism of financial markets. In particular, high frequency computer-based trading (HFT) has grown in recent years to represent about 30% of equity trading in the UK and possible over 60% in the USA. HFT has many proponents. Its roll-out is contributing to fundamental shifts in market structures being seen across the world and, in turn, these are significantly affecting the fortunes of many market participants. But the relentless rise of HFT and algorithmic trading (AT) has also attracted considerable controversy and opposition.
    [Show full text]
  • Theoretical and Practical Aspects of Algorithmic Trading Dissertation Dipl
    Theoretical and Practical Aspects of Algorithmic Trading Zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften (Dr. rer. pol.) von der Fakult¨at fuer Wirtschaftwissenschaften des Karlsruher Instituts fuer Technologie genehmigte Dissertation von Dipl.-Phys. Jan Frankle¨ Tag der m¨undlichen Pr¨ufung: ..........................07.12.2010 Referent: .......................................Prof. Dr. S.T. Rachev Korreferent: ......................................Prof. Dr. M. Feindt Erkl¨arung Ich versichere wahrheitsgem¨aß, die Dissertation bis auf die in der Abhandlung angegebene Hilfe selbst¨andig angefertigt, alle benutzten Hilfsmittel vollst¨andig und genau angegeben und genau kenntlich gemacht zu haben, was aus Arbeiten anderer und aus eigenen Ver¨offentlichungen unver¨andert oder mit Ab¨anderungen entnommen wurde. 2 Contents 1 Introduction 7 1.1 Objective ................................. 7 1.2 Approach ................................. 8 1.3 Outline................................... 9 I Theoretical Background 11 2 Mathematical Methods 12 2.1 MaximumLikelihood ........................... 12 2.1.1 PrincipleoftheMLMethod . 12 2.1.2 ErrorEstimation ......................... 13 2.2 Singular-ValueDecomposition . 14 2.2.1 Theorem.............................. 14 2.2.2 Low-rankApproximation. 15 II Algorthmic Trading 17 3 Algorithmic Trading 18 3 3.1 ChancesandChallenges . 18 3.2 ComponentsofanAutomatedTradingSystem . 19 4 Market Microstructure 22 4.1 NatureoftheMarket........................... 23 4.2 Continuous Trading
    [Show full text]
  • 8 Best Bearish Candlestick Patterns for Day Trading [Free Guide & Video]
    8 Best Bearish Candlestick Patterns for Day Trading [Free Guide & Video] Recently, we discussed the general history of candlesticks and their patterns in a prior post. We also have a great tutorial on the most reliable bullish patterns. But for today, we’re going to dig deeper, and more practical, explaining 8 bearish candlestick patterns every day trader should know. We’ll cover the following: What these patterns look like The criteria for confirming them The story these candles tell How to set entries and risk for each Some common mistakes when interpreting them. 8 Bearish Candlesticks Video Tutorial If you have a few minutes, our in-house trading expert, Aiman Almansoori has cut out a lot of the leg-work for us in this fantastic webinar. We’ve time-stamped the exact spot in the recording where he begins speaking about these 8 bearish candlestick patterns. Have a watch while you read! Also, feel free to use our quick reference guide below for bearish candlestick patterns! Be sure to save the image for your use with your trading and training in the market! What Bearish Candlesticks Tell Us Hopefully at this point in your trading career you’ve come to know that candlesticks are important. Not only do they provide a visual representation of price on a chart, but they tell a story. Behind this story is the belief that the chart tells us everything we need to know: the what being more important than the why. Each candlestick is a representation of buyers and sellers and their emotions, regardless of the underlying “value” of the stock.
    [Show full text]
  • Technical Analysis Masterclass
    TRADING: TECHNICAL ANALYSIS MASTERCLASS - Master The Financial Markets – Rolf Schlotmann & Moritz Czubatinski Copyright © 2019, Rolf Schlotmann, Moritz Czubatinski, Quantum Trade Solutions GmbH All rights reserved, including those of reprinting of extracts, photomechanical and electronical reproduction and translation. Any duplication, reproduction and publication outside the provisions of copyright law (Urheberrechtsgesetz) is not permitted as a whole or in part without the prior written consent of the author. This work is not intended to give specific investment recommendations and merely provides general guidance, exemplary illustrations and personal views. Author, publisher and cited sources are not liable for any loss or other consequences arising from the implementation of their thoughts and views. Any liability is excluded. The advice and information published in this book has been carefully prepared and reviewed by the author. Anyhow, a guarantee or other responsibility for their accuracy, completeness and timeliness cannot be given. In particular, it should be noted that all speculative investment transactions involve a significant risk of loss and are not suitable for all investors. It is strongly recommended not to rely solely on this book, but to conduct own investigations and analyses and, if necessary, to obtain advice from financial advisors, tax advisors and lawyers before making an investment decision. Company identity Quantum Trade Solutions GmbH Jahnstrasse 43 63075 Offenbach Germany Chairmen: Schlotmann, Rolf and Czubatinski, Moritz Publication date: 19.02.2019 1st version Financial charts have been obtained through www.tradingview.com Foreword Introduction 1. What is trading? 1.1 The profit potential 1.2 Decision-making 1.3 Short-term vs. long-term trading 2.
    [Show full text]
  • Dark Pools and High Frequency Trading for Dummies
    Dark Pools & High Frequency Trading by Jay Vaananen Dark Pools & High Frequency Trading For Dummies® Published by: John Wiley & Sons, Ltd., The Atrium, Southern Gate, Chichester, www.wiley.com This edition first published 2015 © 2015 John Wiley & Sons, Ltd, Chichester, West Sussex. Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans- mitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor men- tioned in this book.
    [Show full text]
  • Informational Inequality: How High Frequency Traders Use Premier Access to Information to Prey on Institutional Investors
    INFORMATIONAL INEQUALITY: HOW HIGH FREQUENCY TRADERS USE PREMIER ACCESS TO INFORMATION TO PREY ON INSTITUTIONAL INVESTORS † JACOB ADRIAN ABSTRACT In recent months, Wall Street has been whipped into a frenzy following the March 31st release of Michael Lewis’ book “Flash Boys.” In the book, Lewis characterizes the stock market as being rigged, which has institutional investors and outside observers alike demanding some sort of SEC action. The vast majority of this criticism is aimed at high-frequency traders, who use complex computer algorithms to execute trades several times faster than the blink of an eye. One of the many complaints against high-frequency traders is over parasitic trading practices, such as front-running. Front-running, in the era of high-frequency trading, is best defined as using the knowledge of a large impending trade to take a favorable position in the market before that trade is executed. Put simply, these traders are able to jump in front of a trade before it can be completed. This Note explains how high-frequency traders are able to front- run trades using superior access to information, and examines several proposed SEC responses. INTRODUCTION If asked to envision what trading looks like on the New York Stock Exchange, most people who do not follow the U.S. securities market would likely picture a bunch of brokers standing around on the trading floor, yelling and waving pieces of paper in the air. Ten years ago they would have been absolutely right, but the stock market has undergone radical changes in the last decade. It has shifted from one dominated by manual trading at a physical location to a vast network of interconnected and automated trading systems.1 Technological advances that simplified how orders are generated, routed, and executed have fostered the changes in market † J.D.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON Automated Algorithmic Trading: Machine Learning and Agent-based Modelling in Complex Adaptive Financial Markets by Ash Booth Supervisors: Dr. Enrico Gerding & Prof. Frank McGroarty Examiners: Prof. Alex Rogers & Prof. Dave Cliff A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in the Faculty of Business and Law Faculty of Physical Sciences and Engineering Southampton Management School Electronics and Computer Science Institute for Complex Systems Simulation April 2016 UNIVERSITY OF SOUTHAMPTON ABSTRACT Faculty of Business and Law Faculty of Physical Sciences and Engineering Southampton Management School Electronics and Computer Science Doctor of Philosophy by Ash Booth Over the last three decades, most of the world's stock exchanges have transitioned to electronic trading through limit order books, creating a need for a new set of models for understanding these markets.
    [Show full text]
  • The Cycle Trading Pattern Manual 2 Copyright © Walter Bressert, Inc
    TIMING IS EVERYTHING …And the use of time cycles can greatly improve the accuracy and success of your trading and/or system. There is no magic oscillator or indicator that will bring you THE CYCLE success in the markets. Knowledge of trading techniques and tools to improve TIMING and determine TREND is the key to low TRADING risk high probability trades that can bring you success. Knowledge, self-discipline and persistence are the true keys to PATTERN success in trading. Over time you will develop a trading style that fits your personality and trading skills. There are many tools to MANUAL help improve your trading, but only cycles will allow you to add By Walter Bressert the element of TIME into your trading. www.walterbressert.com Simple buy and sell signals do not consider the whole picture. By combining mechanical trading signals with daily and weekly cycles (or two intra-day time periods and cycles, such as a 45- minute and 180-minute, or a 5-minutes and 20-minute), retracements, trend Indicators and trendlines into Cycle Trading Patterns, you can greatly improve your accuracy and odds of making money on a trade or with a system. The following charts and trading concepts are based on trading the long side of a market. The same techniques and concepts work in mirror image fashion for trading the short side TABLE OF CONTENTS IDENTIFYING CYCLE TOPS AND BOTTOMS USING OSCILLATORS 2 Detrending Takes the Mystery Out of Cycles 3 Oscillators Show Cycle Tops and Bottoms 5 OSCILLATOR/PRICE PATTERNS GENERATE MECHANICAL TRADING SIGNALS 6 Detrended
    [Show full text]
  • Investing with Volume Analysis
    Praise for Investing with Volume Analysis “Investing with Volume Analysis is a compelling read on the critical role that changing volume patterns play on predicting stock price movement. As buyers and sellers vie for dominance over price, volume analysis is a divining rod of profitable insight, helping to focus the serious investor on where profit can be realized and risk avoided.” —Walter A. Row, III, CFA, Vice President, Portfolio Manager, Eaton Vance Management “In Investing with Volume Analysis, Buff builds a strong case for giving more attention to volume. This book gives a broad overview of volume diagnostic measures and includes several references to academic studies underpinning the importance of volume analysis. Maybe most importantly, it gives insight into the Volume Price Confirmation Indicator (VPCI), an indicator Buff developed to more accurately gauge investor participation when moving averages reveal price trends. The reader will find out how to calculate the VPCI and how to use it to evaluate the health of existing trends.” —Dr. John Zietlow, D.B.A., CTP, Professor of Finance, Malone University (Canton, OH) “In Investing with Volume Analysis, the reader … should be prepared to discover a trove of new ground-breaking innovations and ideas for revolutionizing volume analysis. Whether it is his new Capital Weighted Volume, Trend Trust Indicator, or Anti-Volume Stop Loss method, Buff offers the reader new ideas and tools unavailable anywhere else.” —From the Foreword by Jerry E. Blythe, Market Analyst, President of Winthrop Associates, and Founder of Blythe Investment Counsel “Over the years, with all the advancements in computing power and analysis tools, one of the most important tools of analysis, volume, has been sadly neglected.
    [Show full text]
  • Regulation Automated Trading: Cftc Source Code Turnover Provision Is Unnecessary and Dangerous to U.S
    REGULATION AUTOMATED TRADING: CFTC SOURCE CODE TURNOVER PROVISION IS UNNECESSARY AND DANGEROUS TO U.S. MARKETS Thomas Laser* Abstract Over the past several decades, the financial markets have experienced a technological revolution in how securities and other financial instruments are traded. Where these contracts and assets were once traded on the floors of various registered brick and mortar exchanges across the globe, they are now primarily traded via online platforms. While allowing greater efficiency and transparency in the markets, this shift has also spawned the practice of high-frequency algorithmic trading. This process uses highly sophisticated computers and complex algorithms to trade securities and derivative products faster than the human eye can blink. Although many argue that high-frequency algorithmic trading accounts for a great deal of liquidity in our markets and creates transparency with regard to prices, many feel that the nature of the practice creates the potential for extreme instability in the markets as well. Such instability has been exhibited periodically through occurrences known as “flash crashes.” In response to these events, the Commodity Futures Trading Commission has drafted legislation, known as Regulation Automated Trading, aimed at controlling the extent to which algorithmic trading can disrupt the marketplace. However, several of the provisions have come under a great deal of scrutiny. In particular, one provision provides that those engaging in high-frequency algorithmic trading make their source code (the algorithmic code which drives their business) available to regulatory agencies at any time. This Article analyzes the costs and benefits of high-frequency algorithmic trading, and how Regulation Automated Trading oversteps its bounds in trying to regulate the industry.
    [Show full text]
  • Comments of Craig S. Donohue on 265-26
    Statement of Craig S. Donohue ChiefExecutive Officer of CME Group Inc. Before the Joint CFTC-SEC Committee on Emerging Regulatory Issues June 22, 2010 I am Craig S. Donohue, Chief Executive Officer ofCME Group Inc. Thank you Chairman Gensler and Chairman Schapiro for allowing us to present our observations today. You have asked us to discuss the conduct of our markets on Thursday, May 6, 2010 as well as to provide our observations of what was occurring generally in the markets on that date. CME Group is the world's largest and most diverse derivatives marketplace. We are the parent of four separate regulated exchanges, including Chicago Mercantile Exchange Inc. ("CME"), the Board of Trade of the City of Chicago, Inc. ("CBOT"), the New York Mercantile Exchange, Inc. ("NYMEX") and the Commodity Exchange, Inc. ("COMEX"). The CME Group Exchanges offer the widest range of benchmark products available across all major asset classes, including futures and options on futures based on interest rates, equity indexes, foreign exchange, energy, metals, agricultural commodities, and alternative investment products. The CME Group Exchanges serve the hedging, risk management and trading needs of our global customer base by facilitating transactions through the CME Globex® electronic trading platform, our open outcry trading facilities in New York and Chicago, as well as through privately negotiated CME ClearPort transactions. I. Introduction Since May 6, 2010, CME Group has engaged in a detailed analysis regarding trading activity in its markets on that day. Our review indicates that our markets functioned properly. We have identified no trading activity that appeared to be erroneous or that caused the break in the cash equity markets during this period.
    [Show full text]