View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 363 (2003) 43–64 www.elsevier.com/locate/laa Newton’s method for concave operators with resolvent positive derivatives in ordered Banach spaces T. Damm a,∗, D. Hinrichsen b aZentrum Mathematik, TU München, D-80333 München, Germany bInstitut für Dynamische Systeme, Universität Bremen, D-28334 Bremen, Germany Received 23 March 2001; accepted 13 February 2002 Submitted by R. Nabben Abstract We prove a non-local convergence result for Newton’s method applied to a class of nonlin- ear equations in ordered real Banach spaces. The key tools in our approach are special notions of concavity and the spectral theory of resolvent positive operators. © 2002 Published by Elsevier Science Inc. AMS classification: 65J15; 47J25; 47H07; 15A24 Keywords: Newton’s method; Positive operators; Concave operators; Riccati equation 1. Introduction A standard method to solve nonlinear equations is the Newton iteration. Its appli- cability to operator equations in normed spaces was first established by Kantorovich [16]. In the operator-theoretic setup the method is therefore often referred to as the Newton–Kantorovich procedure. Kantorovich specified boundedness conditions on the first and second Fréchet derivatives of the nonlinear operator, which guarantee convergence of the Newton iteration starting in a small neighbourhood of the actual solution. These results can be simplified and generalized, if the underlying space is ordered and the sequence produced by the iteration can be shown to be monotonic ∗ Corresponding author. E-mail addresses:
[email protected] (T.