ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2007.00045.x GEOMETRIC MORPHOMETRIC ANALYSES PROVIDE EVIDENCE FOR THE ADAPTIVE CHARACTER OF THE TANGANYIKAN CICHLID FISH RADIATIONS C´eline Clabaut,1,2,3,4 Paul M. E. Bunje,1,4,5 Walter Salzburger,1,6,7 and Axel Meyer1,8 1Lehrstuhl fur¨ Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany 2Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Medical School, Boston, Massachusetts 02115 3E-mail: celine
[email protected] 4These authors contributed equally to this work. 5E-mail:
[email protected] 6Department of Ecology and Evolution, UNIL Sorge, Le Biophore, CH - 1015 Lausanne, Switzerland 7E-mail:
[email protected] 8Corrosponding author e-mail:
[email protected] Received: April 12, 2006 Accepted: November 9, 2006 The cichlids of East Africa are renowned as one of the most spectacular examples of adaptive radiation. They provide a unique opportunity to investigate the relationships between ecology, morphological diversity, and phylogeny in producing such remarkable diversity. Nevertheless, the parameters of the adaptive radiations of these fish have not been satisfactorily quantified yet. Lake Tanganyika possesses all of the major lineages of East African cichlid fish, so by using geometric morphometrics and comparative analyses of ecology and morphology, in an explicitly phylogenetic context, we quantify the role of ecology in driving adaptive speciation. We used geometric morphometric methods to describe the body shape of over 1000 specimens of East African cichlid fish, with a focus on the Lake Tanganyika species assemblage, which is composed of more than 200 endemic species.