Identification of a Structural Motif Crucial for Infectivity of Hepatitis B Viruses

Total Page:16

File Type:pdf, Size:1020Kb

Identification of a Structural Motif Crucial for Infectivity of Hepatitis B Viruses Identification of a structural motif crucial for infectivity of hepatitis B viruses Lars Stoeckl*†, Anneke Funk†‡, Ariane Kopitzki*, Boerries Brandenburg*, Stefanie Oess§, Hans Will‡,Hu¨ seyin Sirma‡, and Eberhard Hildt*¶ʈ** ¶Department of Internal Medicine II, University of Freiburg, Hugstetterstrasse 55, D-79106 Freiburg, Germany; ‡Department of General Virology, Heinrich Pette Institute, D-20251 Hamburg, Germany; §Institute of Biochemistry, Zentrum der Biologischen Chemie, D-60590 Frankfurt, Germany; *Department of Molecular Virology, Robert Koch Institute, D-13353 Berlin, Germany; and ʈInstitute of Virology, Humboldt University (Charite), D-13353 Berlin, Germany Edited by Jesse Summers, University of New Mexico, Albuquerque, NM, and approved March 3, 2006 (received for review November 16, 2005) Infectious entry of hepatitis B viruses (HBV) has nonconventional Because the membrane translocation function of the TLM is facets. Here we analyzed whether a cell-permeable peptide [trans- highly conserved among all hepadnaviridae tested we investi- location motif (TLM)] identified within the surface protein of gated whether the TLM function is of relevance for the viral life human HBV is a general feature of all hepadnaviruses and plays a cycle. role in the viral life cycle. Surface proteins of all hepadnaviruses contain conserved functional TLMs. Genetic inactivation of the Results duck HBV TLMs does not interfere with viral morphogenesis; The Pre-S Domain of Hepadnaviruses Harbors a Cell Permeability- however, these mutants are noninfectious. TLM mutant viruses Mediating Domain. Detailed analysis revealed that cell perme- bind to cells and are taken up into the endosomal compartment, ability mediated by TLMs does not depend on an unique amino but they cannot escape from endosomes. Processing of surface acid sequence but on the capacity to form an ␣-helix with an protein by endosomal proteases induces their exposure on the amphipathic structure. A homology search for potential TLMs virus surface. This unmasking of TLMs mediates translocation of in the pre-S domain of the surface proteins of various hepad- viral particles across the endosomal membrane into the cytosol, a naviridae predicted the existence of TLMs in the pre-S domain prerequisite for productive infection. The ability of unmasked TLMs of all hepadnaviridae (14). In the case of DHBV, the existence to translocate processed HBV particles across cellular membranes of two independent translocation motifs within the pre-S domain was shown by confocal immunofluorescence microscopy and by is predicted (Fig. 6A, which is published as supporting informa- infection of nonpermissive cell lines with HBV processed in vitro tion on the PNAS web site). with endosomal lysate. Based on these data, we propose an To analyze the potential of these predicted motifs to act as infectious entry mechanism unique for hepadnaviruses that in- cell-permeable peptides, recombinant fusion proteins with volves virus internalization by receptor-mediated endocytosis fol- eGFP were engineered. Immunoblot analysis was performed lowed by processing of surface protein in endosomes. This pro- with a GFP-specific antiserum and the cytosolic fraction derived cessing activates the function of TLMs that are essential for viral from HepG2 cells grown in medium containing these various particle translocation through the endosomal membrane into the purified TLM fusion proteins. The blot revealed comparable cytosol and productive infection. amounts of the TLM fusion proteins within the cytosolic frac- tions, whereas, in the case of cells grown in the presence of WT cell permeability ͉ envelope protein ͉ virus entry eGFP, no eGFP-specific protein was detectable (Fig. 6B). Mu- tation of TLMs prevented translocation of the fusion proteins nfection with human hepatitis B virus (HBV) can cause acute into the cytosol (Fig. 6C). These data indicate that the predicted Ior chronic inflammation of the liver (1, 2). HBV is the TLMs from the hepadnaviridae members analyzed display sim- prototype member of the hepadnaviridae family, which encom- ilar cell permeability when compared with the previously iden- passes members infecting woodchucks, ground squirrels, and tified HBV-TLM. avian viruses isolated from, e.g., pekin ducks, gray herons, and storks. Functionality of the TLMs Is Dispensable for DHBV Secretion. The Duck HBV (DHBV) is a well characterized model system of finding that the membrane translocation function of TLMs is hepadnaviral infection (3). Cultures of primary duck hepatocytes highly conserved throughout hepadnaviridae evolution is sug- (PDHs) can be readily established and efficiently infected (3, 4) gestive for a crucial role in the viral life cycle. To study this and therefore provide a suitable tool for analyzing the early steps observation, mutated 1.2 DHBV genomes were generated cod- ͞ of hepadnaviral infection on the molecular level. As for HBV ing for pre-S S proteins lacking a functional TLM1 (amino acids (5–7), it is known that DHBV infection is initiated by attachment 20–31) (DHBVD1), a functional TLM2 (amino acids 42–53) ͞ of the virus particle to the hepatocyte surface via the pre-S (DHBVD2), or both TLMs (DHBVD1 2) without impairing domain of the viral surface protein L (8, 9). In DHBV there are functionality of the polymerase. Transfection of LMH cells with two surface proteins embedded in the lipid envelope: The major these constructs, followed by cesium chloride centrifugation of S protein, a transmembrane protein that encompasses 167 aa, the culture supernatants and subsequent quantification of the and the L protein, consisting of the S domain N-terminally extended by the 160-aa pre-S domain. Previous work suggested Conflict of interest statement: No conflicts declared. that DHBV enters the cell by receptor-mediated endocytosis (10–13). The mechanism that allows internalized viral particles This paper was submitted directly (Track II) to the PNAS office. to escape from the endocytic pathway remained elusive. Abbreviations: HBV, hepatitis B virus; MGE, multiplicity of genome equivalents; TLM, translocation motif; PDH, primary duck hepatocyte; DHBV, duck HBV; cccDNA, covalently Recently, a cell-permeable peptide [translocation motif (TLM)] closed circular DNA; HBsAg, hepatitis B virus surface antigen; HBcAg, hepatitis B virus core was identified in the pre-S domain of HBV (14). The TLM is a antigen; HA, hemagglutinin. 12-aa-encompassing domain that forms an amphipathic ␣-helix. It †L.S. and A.F. contributed equally to this work. mediates an energy- and receptor-independent transfer of peptides, **To whom correspondence should be addressed. E-mail: eberhard.hildt@uniklinik- nucleic acids, and proteins when fused to them across membranes freiburg.de. without affecting their integrity (14–16). © 2006 by The National Academy of Sciences of the USA 6730–6734 ͉ PNAS ͉ April 25, 2006 ͉ vol. 103 ͉ no. 17 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0509765103 Downloaded by guest on October 2, 2021 noblot analysis of cellular lysates from WT-, DHBVD2-, or DHBVD1͞2-infected cells (Fig. 1B). In contrast to WT-infected cells, cells infected with DHBD1͞2 or DHBVD2 showed no de novo synthesis of core protein. Furthermore, only in cells infected with WT DHBV, but not in cells infected with DH- BVD2 or DHBVD1͞2, replicative intermediates were found by Southern blot analysis (Fig. 1C). Moreover, covalently closed circular DNA (cccDNA) was detected only in PDHs infected with WT DHBV (Fig. 1D) when analyzed 5 days after infection by cccDNA-selective PCR. These data show that destruction of the TLMs abolishes DHBV infectivity. TLMs Are Dispensable for Attachment and Entry of Viral Particles to and into PDHs. To control whether the defect in infectivity of TLM mutant viruses is due to reduced binding to PDHs, attachment assays were performed. After inoculation cells were incubated for2hat4°C(viral binding occurs, and internalization is blocked). Then the amount of viral particles attached to the cell was determined by semiquantitative PCR and immunoblotting. Similar amounts of WT DHBV and the mutant viral particles were found to be attached to the cell surface (Fig. 8A Upper Left, Fig. 1. Destruction of the TLM abolishes infectivity of DHBV. (A) Immuno- which is published as supporting information on the PNAS web fluorescence microscopy of infected PDH using an L-specific antiserum. Cells site). were infected with 100 MGE WT DHBV, DHBVD2, or DHBVD1͞2 mutant. Cells were fixed 4 days after infection. Hoechst staining was used to visualize nuclei. A PCR-based analysis of the amount of viral particles that The photographs were taken at ϫ200 magnification. (B) Immunoblot analysis have entered the cells after 3 h revealed similar amounts of of lysates from PDHs infected with WT DHBV or the mutants by using a DHBV intracellular virus in cells inoculated with WT virus and the core-specific antiserum. Uninfected PDHs served as negative control. (C) PDHs TLM-deficient viruses (Fig. 8A Lower Left). These data collec- were infected with 100 MGE. Cells were harvested 7 days after infection and tively show that the loss of infectivity of TLM mutant viruses is analyzed for replicative intermediates by Southern blotting. (D) Analysis of due to neither an impaired attachment nor inhibition of virus cccDNA by PCR. The cccDNA was isolated 3 days after infection and amplified entry, but to a post entry block. by PCR by using cccDNA-selective primers. Uninfected PDHs served as negative control. TLM Integrity Is Essential for DHBV to Escape from the
Recommended publications
  • Virus Interactions in the Aquatic World Stéphan Jacquet, Xu Zhong, Peter Peduzzi, T
    Virus interactions in the aquatic world Stéphan Jacquet, Xu Zhong, Peter Peduzzi, T. Frede Thingstad, Kaarle J.Parikka, Markus G.Weinbauer To cite this version: Stéphan Jacquet, Xu Zhong, Peter Peduzzi, T. Frede Thingstad, Kaarle J.Parikka, et al.. Virus interactions in the aquatic world. Viruses of Microorganisms, Caister Academic Press, 2018, 978-1- 910190-86-9. 10.21775/9781910190852.06. hal-02786120 HAL Id: hal-02786120 https://hal.inrae.fr/hal-02786120 Submitted on 4 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Virus Interactions in the Aquatic World Stéphan Jacquet1, Xu Zhong2, Peter Peduzzi3, T. Frede Thingstad4, Kaarle J.Parikka5 and Markus G.Weinbauer6,7* 6 1INRA, UMR CARRTEL, Thonon les Bains, France. 2Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada. 3Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria. 4Department of Biology and Hjort Centre for Marine Ecosystem Dynamics, University of Bergen, Bergen, Norway. 5LabMCT, Belgian Department of Defence, Queen Astrid Military Hospital, Brussels, Belgium. 6Ocean Observatory of Villefranche-sur-Mer, Sorbonne University, Villefranche-sur-Mer, France. 7CNRS-INSU, Villefranche Oceanographic Laboratory, Villefranche-sur-Mer, France.
    [Show full text]
  • Entry of Hepatitis B and C Viruses
    VIRAL HEPATITIS FORUM Getting Close Viralto Eradication Hepatitis Forum I. Basic Getting Research Close to Eradication I. Basic Research Entry of Hepatitis B and C Viruses Seungtaek Kim Severance Biomedical Science Institute, Institute of Gastroenterology, Department of Internal Medicine, Yonsei University Col- lege of Medicine, Seoul, Korea B형과 C형 간염 바이러스에 대한 최근의 분자, 세포생물학적인 발전은 간세포를 특이적으로 감염시키는 이들 바이러스에 대한 세포 수용체의 발굴과 더불어 그들의 작용 기전에 대해 더 자세한 정보들을 제공해주고 있다. 특히 C형 간염 바이러스의 경우, 간세포의 서로 다른 곳에 위치한 세포 수용체들이 바이러스의 세포 진입시에 바이러스 표면의 당단백질과 어떤 방식으로 서로 상호 작용하며 세포 내 신호 전달 과정을 거쳐 세포 안으로 들어오게 되는지 그 기전들이 서서히 드러나고 있다. 한편, B형 간염 바이러스의 경우, 오랫동안 밝혀내지 못했던 이 바이러스의 세포 수용체인 NTCP를 최근 발굴하게 됨으로써 세포 진입에 관한 연구에 획기적인 계기를 마련하게 되었으며 동시에 이를 저해할 수 있는 새로운 항바이러스제의 개발도 활기를 띠게 되었다. 임상적으로 매우 중요한 이 두 바이러스의 세포 진입에 관한 연구는 앞으로도 매우 활발하게 이루어질 것으로 기대된다. Keywords: B형 간염 바이러스, C형 간염 바이러스, 세포 진입, 신호 전달, NTCP There are five hepatitis viruses although their classes, genomes, and modes of transmission are different from each other. Of these, hepatitis B virus (HBV) and hepatitis C virus (HCV) are the most dangerous, life-threatening pathogens, which are also responsible for 80-90% of hepatocellular carcinoma. HBV belongs to hepadnaviridae (family) and it has double-strand DNA as its genome, however, its replication occurs via reverse transcription like retrovirus replication. In contrast, HCV belongs to flaviviridae (family) and has positive-sense, single-strand RNA as its genome.
    [Show full text]
  • Virus–Host Interactions and Their Roles in Coral Reef Health and Disease
    !"#$"%& Virus–host interactions and their roles in coral reef health and disease Rebecca Vega Thurber1, Jérôme P. Payet1,2, Andrew R. Thurber1,2 and Adrienne M. S. Correa3 !"#$%&'$()(*+%&,(%--.#(+''/%!01(1/$%0-1$23++%(#4&,,+5(5&$-%#6('+1#$0$/$-("0+708-%#0$9(&17( 3%+7/'$080$9(4+$#3+$#6(&17(&%-($4%-&$-1-7("9(&1$4%+3+:-10'(70#$/%"&1'-;(<40#(=-80-5(3%+807-#( &1(01$%+7/'$0+1($+('+%&,(%--.(80%+,+:9(&17(->34&#0?-#($4-(,01@#("-$5--1(80%/#-#6('+%&,(>+%$&,0$9( &17(%--.(-'+#9#$->(7-',01-;(A-(7-#'%0"-($4-(70#$01'$08-("-1$40'2&##+'0&$-7(&17(5&$-%2'+,/>12( &##+'0&$-7(80%+>-#($4&$(&%-(/10B/-($+('+%&,(%--.#6(540'4(4&8-(%-'-08-7(,-##(&$$-1$0+1($4&1( 80%/#-#(01(+3-12+'-&1(#9#$->#;(A-(493+$4-#0?-($4&$(80%/#-#(+.("&'$-%0&(&17(-/@&%9+$-#( 791&>0'&,,9(01$-%&'$(50$4($4-0%(4+#$#(01($4-(5&$-%('+,/>1(&17(50$4(#',-%&'$010&1(C#$+19D('+%&,#($+( 01.,/-1'-(>0'%+"0&,('+>>/10$9(791&>0'#6('+%&,(",-&'401:(&17(70#-&#-6(&17(%--.("0+:-+'4->0'&,( cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest $4&$($4-(01.,/-1'-(+.(80%/#-#(+1(%--.(./1'$0+1(0#(&1(-##-1$0&,('+>3+1-1$(+.($4-#-(:,+"&,,9( 0>3+%$&1$(-180%+1>-1$#; To p - d ow n e f f e c t s Viruses infect all cellular life, including bacteria and evidence that macroorganisms play important parts in The ecological concept that eukaryotes, and contain ~200 megatonnes of carbon the dynamics of viroplankton; for example, sponges can organismal growth and globally1 — thus, they are integral parts of marine eco- filter and consume viruses6,7.
    [Show full text]
  • Opportunistic Intruders: How Viruses Orchestrate ER Functions to Infect Cells
    REVIEWS Opportunistic intruders: how viruses orchestrate ER functions to infect cells Madhu Sudhan Ravindran*, Parikshit Bagchi*, Corey Nathaniel Cunningham and Billy Tsai Abstract | Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co‑opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents. Morphogenesis Viruses have evolved sophisticated strategies to establish The ER is a membranous system consisting of the The process by which a virus infection. Some viruses bind to cellular receptors and outer nuclear envelope that is contiguous with an intri‑ particle changes its shape and initiate entry, whereas others hijack cellular factors that cate network of tubules and sheets1, which are shaped by structure. disassemble the virus particle to facilitate entry. After resident factors in the ER2–4. The morphology of the ER SEC61 translocation delivering the viral genetic material into the host cell and is highly dynamic and experiences constant structural channel the translation of the viral genes, the resulting proteins rearrangements, enabling the ER to carry out a myriad An endoplasmic reticulum either become part of a new virus particle (or particles) of functions5.
    [Show full text]
  • Lentivirus and Lentiviral Vectors Fact Sheet
    Lentivirus and Lentiviral Vectors Family: Retroviridae Genus: Lentivirus Enveloped Size: ~ 80 - 120 nm in diameter Genome: Two copies of positive-sense ssRNA inside a conical capsid Risk Group: 2 Lentivirus Characteristics Lentivirus (lente-, latin for “slow”) is a group of retroviruses characterized for a long incubation period. They are classified into five serogroups according to the vertebrate hosts they infect: bovine, equine, feline, ovine/caprine and primate. Some examples of lentiviruses are Human (HIV), Simian (SIV) and Feline (FIV) Immunodeficiency Viruses. Lentiviruses can deliver large amounts of genetic information into the DNA of host cells and can integrate in both dividing and non- dividing cells. The viral genome is passed onto daughter cells during division, making it one of the most efficient gene delivery vectors. Most lentiviral vectors are based on the Human Immunodeficiency Virus (HIV), which will be used as a model of lentiviral vector in this fact sheet. Structure of the HIV Virus The structure of HIV is different from that of other retroviruses. HIV is roughly spherical with a diameter of ~120 nm. HIV is composed of two copies of positive ssRNA that code for nine genes enclosed by a conical capsid containing 2,000 copies of the p24 protein. The ssRNA is tightly bound to nucleocapsid proteins, p7, and enzymes needed for the development of the virion: reverse transcriptase (RT), proteases (PR), ribonuclease and integrase (IN). A matrix composed of p17 surrounds the capsid ensuring the integrity of the virion. This, in turn, is surrounded by an envelope composed of two layers of phospholipids taken from the membrane of a human cell when a newly formed virus particle buds from the cell.
    [Show full text]
  • HIV Life Cycle and Medications at Work
    A Training Curriculum for Community Health Workers | HIV Fundamentals HIV Life Cycle and Medications at Work OBJECTIVES Related C3 Roles Providing coaching and social support, At the end of this unit, participants will be able to: providing culturally appropriate health § Describe the stages of HIV replication using the mnemonic education and information AFRITAB § Communicate how the HIV life cycle works, how HIV Related C3 Skills enters the CD4 cell, replicates, and damages the immune Education and facilitation skills, system communication skills, knowledge base § Identify the different classes of antiretroviral medications used for treatment of HIV § Practice identifying antiretroviral medications by brand Method(s) of Instruction name, generic name, and abbreviation Lecture, discussion, teach-back, large § Demonstrate where each antiretroviral medication works to group activity interrupt HIV replication Estimated time INSTRUCTIONS 150 minutes 1. In preparation, review all slides and notes along with activity instructions. Key Concepts 2. Welcome participants. HIV life cycle, CD4, stages of HIV, HIV 3. Introduce the topic and lead discussion. medications, how HIV medications work, 4. Review the unit objectives or write objectives on a antiviral medications, HAART flip chart. 5. Review slides 4–15 on the HIV life cycle. Materials 6. Facilitate practice activity with AFRITAB mnemonic § Computer with internet access and (slide 16). projector 7. Provide a break before beginning the next section. § PowerPoint slides 8. Review slides 17–27
    [Show full text]
  • 1 Chapter I Overall Issues of Virus and Host Evolution
    CHAPTER I OVERALL ISSUES OF VIRUS AND HOST EVOLUTION tree of life. Yet viruses do have the This book seeks to present the evolution of characteristics of life, can be killed, can become viruses from the perspective of the evolution extinct and adhere to the rules of evolutionary of their host. Since viruses essentially infect biology and Darwinian selection. In addition, all life forms, the book will broadly cover all viruses have enormous impact on the evolution life. Such an organization of the virus of their host. Viruses are ancient life forms, their literature will thus differ considerably from numbers are vast and their role in the fabric of the usual pattern of presenting viruses life is fundamental and unending. They according to either the virus type or the type represent the leading edge of evolution of all of host disease they are associated with. In living entities and they must no longer be left out so doing, it presents the broad patterns of the of the tree of life. evolution of life and evaluates the role of viruses in host evolution as well as the role Definitions. The concept of a virus has old of host in virus evolution. This book also origins, yet our modern understanding or seeks to broadly consider and present the definition of a virus is relatively recent and role of persistent viruses in evolution. directly associated with our unraveling the nature Although we have come to realize that viral of genes and nucleic acids in biological systems. persistence is indeed a common relationship As it will be important to avoid the perpetuation between virus and host, it is usually of some of the vague and sometimes inaccurate considered as a variation of a host infection views of viruses, below we present some pattern and not the basis from which to definitions that apply to modern virology.
    [Show full text]
  • Bacterial Virus Ontology; Coordinating Across Databases
    viruses Article Bacterial Virus Ontology; Coordinating across Databases Chantal Hulo 1, Patrick Masson 1, Ariane Toussaint 2, David Osumi-Sutherland 3, Edouard de Castro 1, Andrea H. Auchincloss 1, Sylvain Poux 1, Lydie Bougueleret 1, Ioannis Xenarios 1 and Philippe Le Mercier 1,* 1 Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, 1211 Geneva, Switzerland; [email protected] (C.H.); [email protected] (P.M.); [email protected] (E.d.C.); [email protected] (A.H.A.); [email protected] (S.P.); [email protected] (L.B.); [email protected] (I.X.) 2 University Libre de Bruxelles, Génétique et Physiologie Bactérienne (LGPB), 12 rue des Professeurs Jeener et Brachet, 6041 Charleroi, Belgium; [email protected] 3 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK; [email protected] * Correspondence: [email protected]; Tel.: +41-22379-5870 Academic Editors: Tessa E. F. Quax, Matthias G. Fischer and Laurent Debarbieux Received: 13 April 2017; Accepted: 17 May 2017; Published: 23 May 2017 Abstract: Bacterial viruses, also called bacteriophages, display a great genetic diversity and utilize unique processes for infecting and reproducing within a host cell. All these processes were investigated and indexed in the ViralZone knowledge base. To facilitate standardizing data, a simple ontology of viral life-cycle terms was developed to provide a common vocabulary for annotating data sets. New terminology was developed to address unique viral replication cycle processes, and existing terminology was modified and adapted.
    [Show full text]
  • Host Cell Factors Necessary for Influenza a Infection: Meta-Analysis of Genome Wide Studies
    Host Cell Factors Necessary for Influenza A Infection: Meta-Analysis of Genome Wide Studies Juliana S. Capitanio and Richard W. Wozniak Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta Abstract: The Influenza A virus belongs to the Orthomyxoviridae family. Influenza virus infection occurs yearly in all countries of the world. It usually kills between 250,000 and 500,000 people and causes severe illness in millions more. Over the last century alone we have seen 3 global influenza pandemics. The great human and financial cost of this disease has made it the second most studied virus today, behind HIV. Recently, several genome-wide RNA interference studies have focused on identifying host molecules that participate in Influen- za infection. We used nine of these studies for this meta-analysis. Even though the overlap among genes identified in multiple screens was small, network analysis indicates that similar protein complexes and biological functions of the host were present. As a result, several host gene complexes important for the Influenza virus life cycle were identified. The biological function and the relevance of each identified protein complex in the Influenza virus life cycle is further detailed in this paper. Background and PA bound to the viral genome via nucleoprotein (NP). The viral core is enveloped by a lipid membrane derived from Influenza virus the host cell. The viral protein M1 underlies the membrane and anchors NEP/NS2. Hemagglutinin (HA), neuraminidase Viruses are the simplest life form on earth. They parasite host (NA), and M2 proteins are inserted into the envelope, facing organisms and subvert the host cellular machinery for differ- the viral exterior.
    [Show full text]
  • Virus Replication Cycles
    © Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION A scanning electron micrograph of Ebola virus particles. Ebola virus contains an RNA genome. It causes Ebola hemorrhagic fever, which is a severe and often fatal disease in hu- mans and nonhuman primates. CHAPTER Virus Replication Cycles OUTLINE 3.1 One-Step Growth Curves 3.3 The Error-Prone RNA Polymerases: 3 3.2 Key Steps of the Viral Replication Genetic Diversity Cycle 3.4 Targets for Antiviral Therapies In the struggle for survival, the ■ 1. Attachment (Adsorption) ■ RNA Virus Mutagens: A New Class “ ■ 2. Penetration (Entry) of Antiviral Drugs? fi ttest win out at the expense of ■ 3. Uncoating (Disassembly and Virus File 3-1: How Are Cellular Localization) their rivals because they succeed Receptors Used for Viral Attachment ■ 4. Types of Viral Genomes and Discovered? in adapting themselves best to Their Replication their environment. ■ 5. Assembly Refresher: Molecular Biology ” ■ 6. Maturation Charles Darwin ■ 7. Release 46 229329_CH03_046_069.indd9329_CH03_046_069.indd 4466 11/18/08/18/08 33:19:08:19:08 PPMM © Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION CASE STUDY The campus day care was recently closed during the peak of the winter fl u season because many of the young children were sick with a lower respiratory tract infection. An email an- nouncement was sent to all students, faculty, and staff at the college that stated the closure was due to a metapneumovirus outbreak. The announcement briefed the campus com- munity with information about human metapneumonoviruses (hMPVs). The announcement stated that hMPV was a newly identifi ed respiratory tract pathogen discovered in the Netherlands in 2001.
    [Show full text]
  • RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues
    microorganisms Article Detection of Viral −RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues Sami Salmikangas 1 , Jutta E. Laiho 2 , Kerttu Kalander 1, Mira Laajala 1 , Anni Honkimaa 2, Iryna Shanina 3, Sami Oikarinen 2, Marc S. Horwitz 3, Heikki Hyöty 2 and Varpu Marjomäki 1,* 1 Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland; sami.salmikangas@helsinki.fi (S.S.); [email protected].fi (K.K.); mira.a.laajala@jyu.fi (M.L.) 2 Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; jutta.laiho@tuni.fi (J.E.L.); anni.honkimaa@tuni.fi (A.H.); sami.oikarinen@tuni.fi (S.O.); heikki.hyoty@tuni.fi (H.H.) 3 Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada; [email protected] (I.S.); [email protected] (M.S.H.) * Correspondence: Varpu.s.marjomaki@jyu.fi; Tel.: +358-405634422 Received: 30 October 2020; Accepted: 2 December 2020; Published: 4 December 2020 Abstract: The current methods to study the distribution and dynamics of viral RNA molecules inside infected cells are not ideal, as electron microscopy and immunohistochemistry can only detect mature virions, and quantitative real-time PCR does not reveal localized distribution of RNAs. We demonstrated here the branched DNA in situ hybridization (bDNA ISH) technology to study both the amount and location of the emerging RNA and +RNA during acute and persistent enterovirus − infections. According to our results, the replication of the viral RNA started 2–3 h after infection and the translation shortly after at 3–4 h post-infection.
    [Show full text]
  • The Emerging Role of HIV-1 Integrase in Virion Morphogenesis
    viruses Review Going beyond Integration: The Emerging Role of HIV-1 Integrase in Virion Morphogenesis Jennifer L. Elliott and Sebla B. Kutluay * Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; [email protected] * Correspondence: [email protected] Received: 26 August 2020; Accepted: 7 September 2020; Published: 9 September 2020 Abstract: The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis. Keywords: HIV-1; integrase; maturation; integrase–RNA interactions; protein–RNA interactions 1.
    [Show full text]