Inflammatory Cytokine (TNF-Alpha) by Targeted DNA Vaccine Confers Long

Total Page:16

File Type:pdf, Size:1020Kb

Inflammatory Cytokine (TNF-Alpha) by Targeted DNA Vaccine Confers Long Gene Therapy (1999) 6, 1128–1138 1999 Stockton Press All rights reserved 0969-7128/99 $12.00 http://www.stockton-press.co.uk/gt Augmentation of natural immunity to a pro- inflammatory cytokine (TNF-alpha) by targeted DNA vaccine confers long-lasting resistance to experimental autoimmune encephalomyelitis G Wildbaum and N Karin Department of Immunology, Rappaport Family Institute for Research in the Medical Sciences, Bruce Rappaport Faculty of Medicine, Technion, POB 9697, Haifa 31096, Israel TNF-␣ is thought to be a key pro-inflammatory cytokine in titer and conferred EAE resistance. These antibodies were T cell-mediated autoimmune diseases, particularly in rheu- found to be neutralizing in vitro and capable of inhibiting matoid arthritis (RA) and multiple sclerosis (MS). Experi- the development of disease when transferred to other EAE mental autoimmune encephalomyelitis (EAE) serves as an rats. Thus, modulation of EAE with TNF-␣ DNA vaccines animal model for MS. The current study observes a notable enhances the regulation of natural immunity to a self pro- TNF-␣-specific antibody titer generated during the course inflammatory cytokine and provides a tool by which the of EAE, apparently not sufficient to prevent the develop- immune system is encouraged to elicit anti-self protective ment of disease. Administration of TNF-␣-naked DNA vac- immunity to restrain its own harmful reactivity when such cine enhanced the production of TNF-␣-specific antibody a response is needed. Keywords: TNF-␣; DNA vaccination; natural immunity; neutralizing antibodies; experimental autoimmune encephalomyel- itis; CNS Introduction interferon gamma (IFN-␥) and TNF-␣, and, to a much lesser extent, IL-4 and IL-10; Th2 cells that produce IL-4, Experimental autoimmune encephalomyelitis (EAE), is IL-10 and IL-13 and, to a much lesser extent, IFN-␥ and an autoimmune disease of the central nervous system TNF-␣.12–21 Th1 cells selected in response to various auto- (CNS) which serves as a model for the human disease, antigens transfer T cell-mediated autoimmune diseases, multiple sclerosis (MS), since in both diseases circulating whereas IL-4-secreting Th2 cells, selected in response to leukocytes penetrate the blood–brain barrier and damage these same antigens, either inhibit or exert no profound myelin resulting in impaired nerve conduction and paral- effect on the inflammatory process.16,22–34 High levels of 1,2 ysis. We have previously used molecular biological IFN-␥ and low levels of IL-4 positively select for Th1 techniques to follow leukocyte trafficking to the site of cells, whereas low levels of IFN-␥ together with high lev- inflammation in the CNS of EAE rats, and suggested a els of IL-4 mediate Th2 selection.12–17 In a recent study, model that characterizes this process as a sequential we isolated mRNA encoding interferon gamma-inducing multi-step event in which a primary influx of T cells factor (IGIF, IL-18) from the EAE brain, generated neu- interact with its target antigen to activate the blood–brain tralizing antibodies against its gene product and explored barrier and initiate a secondary influx to commence the the critical role of IGIF in T cell selection and regulation 3 disease. We have also developed various ways to inhibit of disease.35 The protective administration of IGIF-spe- the accumulation of the secondary influx at the target cific antibodies selects low IFN-␥, low TNF-␣, high IL-4- organ and thus block, or even reverse an ongoing dis- producing T cells.35 While the role of IFN-␥ in the mani- 4–7 4 ease. This includes adhesion molecule blockade, T cell festation of EAE is enigmatic, the pivotal role of TNF-␣ 5 receptor antagonism, and soluble peptide therapy using has been well studied. TNF-␣ is produced by activated non-pathogenic tolerizing analogs of the encephalitog- T cells (mostly Th1) and macrophages, and its elevated 5–7 enic determinant. Accumulation of the secondary expression at the site of inflammation occurs during the influx at the site of inflammation is dependent on various critical phase of disease,11 at the time when the ‘second- pro-inflammatory cytokines and chemokines that are ary influx’ of leukocytes is apparent.3 Except for a single produced at the site of inflammation.8–11 + recent study carried out in genetically modified ani- Based on their cytokine profile, CD4 T cells can be mals,36 all investigators agree that TNF-␣ contributes to divided into Th1 cells that produce large amounts of the pro-inflammatory process in EAE, and probably MS.25,37–51 Thus, inhibition of TNF-␣ activity by either neutralizing antibodies or soluble TNF receptor therapy, 25,42,45,47–51 Correspondence: N Karin effectively prevents, or even reverses EAE. Received 4 November 1998; accepted 1 February 1999 Overexpression of TNF-␣ in the CNS aggravated the dis- Augmentation of natural immunity to a pro-inflammatory cytokine G Wildbaum and N Karin 1129 ease,46 whereas genetically impaired expression of this attained its maximal severity (day 13), and marked gene inhibited the development and progression of dis- regression following recovery (Figure 1d). ease.43 Its pivotal role in T cell-mediated autoimmune dis- eases makes TNF-␣ a favorable target for clinical trials Prevention of EAE using TNF-␣ naked DNA vaccines aiming at inhibiting MS and rheumatoid arthritis (RA). Cloned PCR products of rat TNF-␣, obtained as described From a clinical perspective, a major disadvantage in tre- above, were ligated into a pcDNA3 eukaryotic expression ating these chronic diseases with xenogenic neutralizing vector and used as constructs for naked DNA vacci- antibodies, or even chimeric humanized antibodies nation. Rats were subjected to 3 weekly injections of the (reviewed in Ref. 52), lies in their immunogenicity. Fol- above construct. Control rats were either injected with lowing repeated immunization, even these engineered the pcDNA3 vector alone, or with PBS. Two months after antibodies do trigger an apparently allotypic response. the last immunization all rats were immunized with p68– We have recently utilized the novel technology of naked 86/CFA to induce active EAE. All control (PBS- DNA vaccination53–62 to generate self-specific protective immunized) and pcDNA3-vaccinated rats developed immunity against C-C chemokines and inhibit EAE.63 active disease that persisted for 5–6 days (Figure 2, six of Resistance could be transferred by C-C chemokine-spe- six in each group with a maximum clinical score of cific neutralizing antibodies.63 The apparent advantage of 3 ± 0.28 in control, 2.83 ± 0.18 in pcDNA3-immunized this method of therapy motivated us to evaluate its thera- rats). In contrast, rats injected with the TNF-␣-naked peutic potential against TNF-␣. DNA vaccine were resistant to EAE (incidence of two of six with a maximum clinical score of 0.33 ± 0.2, P Ͻ 0.003 for treatment with TNF-␣-naked DNA vaccine compared Results with either control or pcDNA3 treatments). Thus, the subsequent in vivo immune response to TNF-␣-naked Levels of mRNA encoding TNF-␣ increase in the DNA vaccine augmented in rats during the development inflamed brain before onset and during disease of EAE prevented the disease. progression RT-PCR analyses of the levels of mRNA encoding Lewis rats immunized with guinea-pig myelin basic pro- TNF-␣ in the brain and spinal cord of naked DNA-vacci- tein (MBP) emulsified in complete Freund’s adjuvant nated EAE-resistant rats (samples were obtained 12 days (CFA) develop the active form of EAE. At the onset of after active EAE induction) revealed a marked decrease disease, the immune T cell response is directed against a (data not shown), which was probably due to the marked major encephalitogenic determinant comprising the resi- reduction in the pro-inflammatory process, which occurs dues 68–86 of the peptide and then to a secondary deter- in the CNS of control EAE rats. minant encompassed by the residues 87–89 of this pep- tide.64–66 We generated long-term CD4+ T cell lines in Generation of natural immunity to TNF-␣ in EAE rats response to each of the above determinants.3,5 We named The development of anti-self immunity to TNF-␣ in EAE these lines according to their target determinant, L68–86 rats was evaluated. Just before active induction of disease and L87–99.3,5 Each line is encephalitogenic, that is the (day 0) and when EAE attained its maximum severity line is capable of transferring EAE to naive recipients. (day 13) blood samples were analyzed for the production Rats injected with L68–86 developed transferred EAE of antibodies against TNF-␣. Rats with developing EAE that persisted for 5–6 days (Figure 1a). Before adoptive displayed a significantly increased TNF-␣-specific anti- transfer of disease (day 0), and at various time-points body titer as compared with rats immunized in hind foot (before the onset of disease (day 3), at the day of onset pads with CFA alone (Figure 3d versus b, log2 Ab titer (day 5), the peak (day 7), following recovery (day 10), of 11 ± 0.85 versus 7 ± 0.66, P Ͻ 0.05). These results are and 10 days after recovery (day 20)) midbrain–brain stem remarkable since both groups exhibited an extensive local samples were obtained from six different rats at each inflammatory process at the site of CFA immunization time-point. From each sample mRNA was isolated and (hind foot pads), with enhanced levels of TNF-␣ mRNA subjected to RT-PCR analysis using specific oligonucleo- (data not shown). Nevertheless, only rats with tide primers which we constructed. Each amplification developing EAE manifested an apparent level of mRNA was calibrated to ␤-actin and verified by Southern blot- encoding TNF-␣ at the CNS that substantially increased ting analysis. This enabled semi-quantitative analysis of at the time when clinical disease attained maximum the levels of mRNA encoding TNF-␣ at the site of severity (Figure 1d).
Recommended publications
  • Therapeutic and Prophylactic Use of Oral, Low-Dose Ifns in Species of Veterinary Interest: Back to the Future
    veterinary sciences Review Therapeutic and Prophylactic Use of Oral, Low-Dose IFNs in Species of Veterinary Interest: Back to the Future Sara Frazzini 1 , Federica Riva 2,* and Massimo Amadori 3 1 Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; [email protected] 2 Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy 3 Rete Nazionale di Immunologia Veterinaria, 25125 Brescia, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0250334519 Abstract: Cytokines are important molecules that orchestrate the immune response. Given their role, cytokines have been explored as drugs in immunotherapy in the fight against different pathological conditions such as bacterial and viral infections, autoimmune diseases, transplantation and cancer. One of the problems related to their administration consists in the definition of the correct dose to avoid severe side effects. In the 70s and 80s different studies demonstrated the efficacy of cytokines in veterinary medicine, but soon the investigations were abandoned in favor of more profitable drugs such as antibiotics. Recently, the World Health Organization has deeply discouraged the use of antibiotics in order to reduce the spread of multi-drug resistant microorganisms. In this respect, the use of cytokines to prevent or ameliorate infectious diseases has been highlighted, and several studies show the potential of their use in therapy and prophylaxis also in the veterinary field. In this review we aim to review the principles of cytokine treatments, mainly IFNs, and to update the experiences encountered in animals. Keywords: veterinary immunotherapy; cytokines; IFN; low dose treatment; oral treatment Citation: Frazzini, S.; Riva, F.; Amadori, M.
    [Show full text]
  • Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications
    International Journal of Molecular Sciences Review Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications Sandra Maria Barbalho 1,2,3,* , Uri Adrian Prync Flato 1,2 , Ricardo José Tofano 1,2, Ricardo de Alvares Goulart 1, Elen Landgraf Guiguer 1,2,3 , Cláudia Rucco P. Detregiachi 1 , Daniela Vieira Buchaim 1,4, Adriano Cressoni Araújo 1,2 , Rogério Leone Buchaim 1,5, Fábio Tadeu Rodrigues Reina 1, Piero Biteli 1, Daniela O. B. Rodrigues Reina 1 and Marcelo Dib Bechara 2 1 Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; urifl[email protected] (U.A.P.F.); [email protected] (R.J.T.); [email protected] (R.d.A.G.); [email protected] (E.L.G.); [email protected] (C.R.P.D.); [email protected] (D.V.B.); [email protected] (A.C.A.); [email protected] (R.L.B.); [email protected] (F.T.R.R.); [email protected] (P.B.); [email protected] (D.O.B.R.R.) 2 School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17506-000, São Paulo, Brazil; [email protected] 3 Department of Biochemistry and Nutrition, Food Technology School, Marília 17525-902, São Paulo, Brazil 4 Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, São Paulo, Brazil 5 Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB–USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012901, São Paulo, Brazil * Correspondence: [email protected]; Tel.: +55-14-99655-3190 Received: 6 May 2020; Accepted: 19 May 2020; Published: 20 May 2020 Abstract: Skeletal muscle is capable of secreting different factors in order to communicate with other tissues.
    [Show full text]
  • Increased Peripheral Blood Inflammatory Cytokine Levels In
    www.nature.com/scientificreports OPEN Increased peripheral blood infammatory cytokine levels in amyotrophic lateral sclerosis: a Received: 3 May 2017 Accepted: 20 July 2017 meta-analysis study Published: xx xx xxxx Yang Hu, Chang Cao, Xiao-Yan Qin, Yun Yu, Jing Yuan, Yu Zhao & Yong Cheng Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with poorly understood etiology. Increasing evidence suggest that infammation may play a critical role in the pathogenesis of ALS. Several studies have demonstrated altered levels of blood cytokines in ALS, but results were inconsistent. Therefore, we did a systematic review of studies comparing blood infammatory cytokines between ALS patients and control subjects, and quantitatively combined the clinical data with a meta- analysis. The systematic review of Pubmed and Web of Science identifed 25 studies encompassing 812 ALS patients and 639 control subjects. Random-efects meta-analysis demonstrated that blood tumor necrosis factor-α (TNF; Hedges’ g = 0.655; p = 0.001), TNF receptor 1 (Hedges’ g = 0.741; p < 0.001), interleukin 6 (IL-6; Hedges’ g = 0.25; p = 0.005), IL-1β (Hedges’ g = 0.296; p = 0.038), IL-8 (Hedges’ g = 0.449; p < 0.001) and vascular endothelial growth factor (Hedges’ g = 0.891; p = 0.003) levels were signifcantly elevated in patients with ALS compared with control subjects. These results substantially enhance our knowledge of the infammatory response in ALS, and peripheral blood infammatory cytokines may be used as diagnostic biomarkers for ALS in the future. Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a fatal neurodegenerative disease characterized by the degeneration of motor neurons in brain and spinal cord1.
    [Show full text]
  • Expression of Osteopontin, Interleukin 17 and Interleukin 10 Among Rheumatoid Arthritis Sudanese Patients
    Arch Microbiol Immunology 2020; 4 (4): 131-138 10.26502/ami.93650052 Original Article Expression of Osteopontin, Interleukin 17 and Interleukin 10 among Rheumatoid Arthritis Sudanese Patients Mohamed A Eltahir1, Amar M Ismail2, Elhaj NM Babiker1, Mohammed KA Karrar1, Kawthar A Mohammed S Alih3* 1Department of Clinical Chemistry, Faculty of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan 2Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan 3General Department, Faculty of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan *Corresponding Author: Kawthar A Mohammed S Alih, General Department, Faculty of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan; E-mail: [email protected] Received: 22 October 2020; Accepted: 03 November 2020; Published: 18 November 2020 Citation: Mohamed A Eltahir, Amar M Ismail, Elhaj NM Babiker, Mohammed KA Karrar, Kawthar A Mohammed S Alih. Expression of Osteopontin, Interleukin 17 and Interleukin 10 among Rheumatoid Arthritis Sudanese Patients. Archives of Microbiology & Immunology 4 (2020): 131-138. Abstract Materials and Methods: A case control hospital Background: Rheumatoid arthritis (RA) is the based study for groups of 88 rheumatoid arthritis most common inflammatory arthritis in the world. patients was included from Outpatient Clinic. The Its exact cause is unknown; proinflammatory and control groups matched in numbers, age and sex anti inflammatory cytokines play key roles in the with case. After inform consent, Serum from Both pathophysiology of disease. patients and controls were examined for OPN, IL- 17 and IL-10. Objectives: This study aimed to measure the level of pro inflammatory cytokines Osteopontin (OPN) Results: The mean age of RA patients was 41.0 and interleukin (IL-17) and anti-inflammatory ±11.7 years.
    [Show full text]
  • Role of Mitogen-Activated Kinases in Cd40-Mediated T Cell Activation of Monocyte/ Macrophage and Vascular Smooth Muscle Cell Cytokine/Chemokine Production Denise M
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works August 1999 Role of Mitogen-activated Kinases in Cd40-mediated T Cell Activation of Monocyte/ macrophage and Vascular Smooth Muscle Cell Cytokine/chemokine Production Denise M. Milhorn East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Immunology and Infectious Disease Commons Recommended Citation Milhorn, Denise M., "Role of Mitogen-activated Kinases in Cd40-mediated T Cell Activation of Monocyte/macrophage and Vascular Smooth Muscle Cell Cytokine/chemokine Production" (1999). Electronic Theses and Dissertations. Paper 2950. https://dc.etsu.edu/ etd/2950 This Dissertation - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quaiity of the copy subm itted. Broken or indistinct print, colored or poor quality illustrations arxf photographs, print bleedthrough. sutwtandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete m anuscrit and there are missing pages, these wiH be noted.
    [Show full text]
  • Synergism of TNF-Α and IFN-Γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-Cov-2 Infection and Cytokine Shock Syndromes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.361048; this version posted November 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes Rajendra Karki1#, Bhesh Raj Sharma1#, Shraddha Tuladhar1, Evan Peter Williams2, Lillian Zalduondo2, Parimal Samir1, Min Zheng1, Balamurugan Sundaram1, Balaji Banoth1, R. K. Subbarao Malireddi1, Patrick Schreiner3, Geoffrey Neale4, Peter Vogel5, Richard Webby6, Colleen Beth Jonsson2, and Thirumala-Devi Kanneganti1* 1 Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA 2 Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA 3 The Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA 4 Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA 5 Animal Resources Center and Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA 6 Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA # Equal Contribution *Lead contact; correspondence to: Thirumala-Devi Kanneganti Department of Immunology,
    [Show full text]
  • The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell
    The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice This information is current as of October 2, 2021. Jonathan Sitrin, Eric Suto, Arthur Wuster, Jeffrey Eastham-Anderson, Jeong M. Kim, Cary D. Austin, Wyne P. Lee and Timothy W. Behrens J Immunol published online 10 July 2017 http://www.jimmunol.org/content/early/2017/07/07/jimmun Downloaded from ol.1700608 Supplementary http://www.jimmunol.org/content/suppl/2017/07/07/jimmunol.170060 Material 8.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 10, 2017, doi:10.4049/jimmunol.1700608 The Journal of Immunology The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice Jonathan Sitrin,* Eric Suto,† Arthur Wuster,*,‡ Jeffrey Eastham-Anderson,x Jeong M.
    [Show full text]
  • IFN-Γ Abrogates Endotoxin Tolerance by Facilitating Toll-Like Receptor-Induced Chromatin Remodeling
    IFN-γ abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling Janice Chena and Lionel B. Ivashkiva,b,1 aGraduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021; and bArthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021 Edited by Ruslan Medzhitov, Yale University School of Medicine, New Haven, CT, and approved September 30, 2010 (received for review June 9, 2010) An important mechanism by which IFN-γ primes macrophages for genes important for host defense concomitant with silencing of enhanced innate immune responses is abrogation of feedback in- inflammatory genes that can cause excessive toxicity) (7, 9, 10). hibitory pathways. Accordingly, IFN-γ abrogates endotoxin toler- IFN-γ is a potent endogenous activator of macrophages that ance, a major negative feedback loop that silences expression of augments responses to activating stimuli such as TLR ligands by inflammatory cytokine genes in macrophages previously exposed various mechanisms (11). One important function of IFN-γ is to endotoxin/Toll-like receptor (TLR) ligands. Mechanisms by which reversal of endotoxin tolerance and restoration of inflammatory IFN-γ inhibits endotoxin tolerance have not been elucidated. Here, cytokine production, which has been shown in vitro and in vivo in we show that pretreatment with IFN-γ prevented tolerization of mice and humans (12–16). Importantly, the in vivo biological primary human monocytes and restored TLR4-mediated induction significance of IFN-γ–mediated reversal of endotoxin tolerance of various proinflammatory cytokines, including IL-6 and TNFα. Sur- has been established in human patients.
    [Show full text]
  • Chapter 3. Osteoclast Biology and Bone Resorption
    16 1 CHAPTER^ 66. Fuentealba LC, Eivers E, Ikeda A. Hurtado C, Kuroda H, Pera diates cooperative signaling by the transforming growth factor-p EM, De Robertis EM 2007 Integrating patterning signals: Wnti and wnt pathways. Proc Natl Acad Sci USA 97:8358-8363. GSK3 regulates the duration of the BMP/Smadl signal. Cell 71. Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai 131 : 980-993. S, Gallea S, Stiot V, Blanchet AM, Courtois B, Baron R, Rawadi 67. Sapkota G, Alarcon C, Spagnoli FM, Brivanlou AH, Massague J G 2001 Opposite effects of bone morphogenetic protein-2 and 2007 Balancing BMP signaling through integrated inputs into the transforming growth factor-pl on osteoblast differentiation. Bone Smadl linker. Mol Cell 25:441454. 29:323-330. M, M, SE, S, 72. Zhao Qiao Harris Chen D, Oyajobi BO, Mundy GR 68. Nakayama K, Tamura Y, Suzawa M, Harada S, Fukumoto Kato 2006 The zinc finger transcription factor Gli2 mediates bone mor- M, Miyazono K, Rodan GA, Takeuchi Y, Fujita T 2003 Receptor phogenetic protein 2 expression in osteoblasts in response to tyrosine kinases inhibit bone morphogenetic protein-Smad re- hedgehog signaling. Mol Cell Biol 26:6197-6208. sponsive promoter activity and differentiation of murine MC3T3- 73. Li Y, Li A, Strait K, Zhang H, Nanes MS, Weitzmann MN 2007 El osteoblast-like cells. J Bone Miner Res 18:827-835. Endogenous TNFalpha lowers maximum peak bone mass and in- 69. Hu MC, Rosenblum ND 2005 Smadl, p-catenin and Tcf4 associate hibits osteoblastic Smad activation through NF-kappaB.
    [Show full text]
  • Role of Inflammatory Cytokines in COVID-19 Patients
    Review Role of Inflammatory Cytokines in COVID-19 Patients: A Review on Molecular Mechanisms, Immune Functions, Immunopathology and Immunomodulatory Drugs to Counter Cytokine Storm Ali A. Rabaan 1 , Shamsah H. Al-Ahmed 2, Javed Muhammad 3, Amjad Khan 4, Anupam A Sule 5 , Raghavendra Tirupathi 6,7, Abbas Al Mutair 8,9,10, Saad Alhumaid 11 , Awad Al-Omari 12,13, Manish Dhawan 14,15 , Ruchi Tiwari 16 , Khan Sharun 17 , Ranjan K. Mohapatra 18, Saikat Mitra 19, Muhammad Bilal 20 , Salem A. Alyami 21, Talha Bin Emran 22 , Mohammad Ali Moni 23,* and Kuldeep Dhama 24,* 1 Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; [email protected] 2 Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia; [email protected] 3 Department of Microbiology, The University of Haripur, Khyber Pakhtunkhwa 22620, Pakistan; Citation: Rabaan, A.A.; Al-Ahmed, [email protected] S.H.; Muhammad, J.; Khan, A.; Sule, 4 Department of Public Health/Nutrition, The University of Haripur, Khyber Pakhtunkhwa 22620, Pakistan; A.A; Tirupathi, R.; Mutair, A.A.; [email protected] 5 Alhumaid, S.; Al-Omari, A.; Dhawan, Medical Director of Informatics and Outcomes, St Joseph Mercy Oakland, Pontiac, MI 48341, USA; M.; et al. Role of Inflammatory [email protected] 6 Department of Medicine Keystone Health, Penn State University School of Medicine, Cytokines in COVID-19 Patients: A Hershey, PA 16801, USA; [email protected] Review on Molecular Mechanisms, 7 Department of Medicine, Wellspan Chambersburg and Waynesboro (Pa.) Hospitals, Immune Functions, Chambersburg, PA 16801, USA Immunopathology and 8 Research Center, Almoosa Specialist Hospital, Alahsa 36342, Saudi Arabia; Immunomodulatory Drugs to [email protected] Counter Cytokine Storm.
    [Show full text]
  • Osteoimmunological Aspects on Inflammation and Bone Metabolism Uwe Lange*, Gabriel Dischereit, Elena Neumann, Klaus Frommer, Ingo H
    Lange et al. J Rheum Dis Treat 2015, 1:2 ISSN: 2469-5726 Journal of Rheumatic Diseases and Treatment Review Article: Open Access Osteoimmunological Aspects on Inflammation and Bone Metabolism Uwe Lange*, Gabriel Dischereit, Elena Neumann, Klaus Frommer, Ingo H. Tarner and Ulf Müller-Ladner Kerckhoff-Klinik Department of Rheumatology, Osteology and Physical Medicine, University of Giessen, Germany *Corresponding author: Professor Uwe Lange, Department of Rheumatology, Osteology and Physical Medicine, University of Giessen, Benekestr. 2-8, D- 61231 Bad Nauheim, Germany, Tel: 0049(0)6032-996-2101, Fax: 0049(0)6032-996-2185, E-mail: [email protected] Abstract metabolism. In particular, the immune system and bone metabolism Bone remodelling is characterized by a balance between bone are so closely intertwined that pro-inflammatory cytokines such as resorption and bone formation. The osteoblasts are responsible for tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, and IL-17 bone synthesis and the osteoclasts for bone resorption. A finely could be identified as stimulators in the formation of osteoclasts. adjusted interaction between molecular mechanisms results, via They are therefore essential mediators in bone resorption, primarily cytokines, hormones and growth factors, in homeostasis of bone in chronic inflammatory diseases [4,5]. metabolism. Here, the RANK/RANKL/OPG-system is actively involved in the differentiation and function of osteoclasts and is The basic requirement for the maintenance of bone homeostasis known to play a central role in the majority of pathophysiological is a sufficient distinction between osteoclasts and osteoblasts. mechanisms. Also the Wnt and BMP signalling pathways play a Two cytokines, namely the macrophage colony stimulating factor major role in osteoblast differentiation and bone remodeling.
    [Show full text]
  • OX40L Blockade Is Therapeutic in Arthritis, Despite Promoting Osteoclastogenesis
    OX40L blockade is therapeutic in arthritis, despite promoting osteoclastogenesis Emily Gwyer Findlaya,1,2, Lynett Danksb,1, Jodie Maddena, Mary M. Cavanagha, Kay McNameeb, Fiona McCannb, Robert J. Snelgrovea, Stevan Shawc, Marc Feldmannd,3, Peter Charles Taylord, Nicole J. Horwoodd, and Tracy Hussella,3,4 aLeukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom; bKennedy Institute of Rheumatology, London W6 8LH, United Kingdom; cUCB Pharma, Slough SL1 4EN, United Kingdom; and dNuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom Contributed by Marc Feldmann, November 19, 2013 (sent for review May 16, 2013) An immune response is essential for protection against infection, The TNF superfamily member OX40 (CD134) is induced 24 to but, in many individuals, aberrant responses against self tissues 48 h after T-cell activation and binds the equally inducible OX40 cause autoimmune diseases such as rheumatoid arthritis (RA). ligand (OX40L) on antigen-presenting cells (APCs), causing a bi- How to diminish the autoimmune response while not augmenting directional activating signal to both cells. OX40 signaling promotes infectious risk is a challenge. Modern targeted therapies such as T-cell survival and their division and cytokine production, and, in anti-TNF or anti-CD20 antibodies ameliorate disease, but at the APCs, OX40L signaling causes maturation and the release of in- cost of some increase in infectious risk. Approaches that might flammatory mediators (7), or, in the case of B cells, increased IgG specifically reduce autoimmunity and tissue damage without production (8).
    [Show full text]