Rapid Control Prototyping for Networked Smart Grid Systems Based on an Agile Development Process
Total Page:16
File Type:pdf, Size:1020Kb
Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng DISSERTATION Rapid Control Prototyping for Networked Smart Grid Systems Based on an Agile Development Process Submitted at the Faculty of Electrical Engineering and Information Technology, TU Wien in partial fulfilment of the requirements for the degree of Doktor der technischen Wissenschaften (equals Ph.D.) under supervision of em. o. Univ. Prof. Dipl.-Ing. Dr. techn. Dietmar Dietrich Institute of Computer Technology, Institute number: 384 TU Wien, Austria and Prof. Dr. Sebastian Lehnhoff OFFIS { Institute for Information Technology Carl von Ossietzky University in Oldenburg, Germany by Dipl.-Ing. Mario Faschang Matr. No. 0525929 Krottenbachstraße 102/2/1 1190 Vienna, Austria June 29, 2015 | This page intentionally left blank | Putting a man on the moon was one of the greatest technological challenges of the 20th century. In the 21st century we face an even greater test { tackling climate change. In contrast to the space race, the solutions required today must encompass us all. This is not just about one man walking on the moon, but about 7 or 8 billion people, the population of 2020, living low carbon lifestyles in harmony with our climate. Mr. Steve Howard (CEO the Climate Group) { 2008 III | This page intentionally left blank | Kurzfassung Ein nachhaltiges Energieversorgungssystem ist unentbehrlich um dem fortschreitenden Klimawan- del erfolgreich entgegenzuwirken. Im Zuge der Entwicklung hin zu solch einem Energiever- sorgungssystem werden zunehmend erneuerbare Energiequellen zur verteilten Stromerzeugung eingesetzt. Regelungssysteme sind n¨otig,um diese verteilten Erzeugungsanlagen stabil in die elek- trischen Energieversorgungssysteme integrieren und dort effizient betreiben zu k¨onnen.Aufgrund der Neuheit dieser Regelung von aktiven Komponenten in elektrischen Verteilernetzen fehlt es an Methoden und Werkzeugen f¨ureine durchg¨angigeund konsistente Regelungssystementwicklung. Um dem zu begegnen, wird in der vorliegenden Arbeit ein Prozess zum Rapid Prototyping von Regelungssystemen f¨urvernetzte, intelligente Stromnetze entwickelt, angewandt und validiert. Dazu wird zuerst ein Konzept des Prozesses zur Verbindung der einzelnen Regelungssystem- Entwicklungsschritte erstellt. Der Fokus liegt dabei auf der schnellen und Risiko-minimalen Entwicklung und Inbetriebnahme des Regelungssystems im Stromnetz. F¨urdie Umsetzung des Konzepts wird eine spezielle Integrationskomponente entwickelt und eingesetzt die sich durch den gesamten Prozess, vom Entwurf des Regelungssystems bis hin zu dessen Betrieb, zieht und eine nahtlose Inbetriebnahme erm¨oglicht. Der Beitrag dieser Arbeit, der den vorgestellten Prozess auszeichnet, ist seine agile und flexible Struktur, die daraus resultierende schnelle Entwick- lung und nahtlose Inbetriebnahme der Regelungssysteme, sowie die Risikoreduktion die w¨ahrend des gesamten Entwicklungsprozesses im Fokus steht. Der vorgestellte und umgesetzte Entwick- lungsprozess wird in einem industriellen Forschungs- und Entwicklungsprojekt zur Regelungssys- tementwicklung f¨urintelligente Niederspannungsnetze ganzheitlich eingesetzt. Dies beinhaltet die gekoppelte Simulation des Strom- und Kommunikationsnetzes, die Controller-Hardware-in-the- Loop-Evaluierung, die nahtlose Feldintegration, sowie die einfache Verbesserung und Erweiterung der entworfenen Regelungssysteme. Mit dieser Methode wurden Regelungssysteme entwickelt mit dem Ziel der Beeinflussung aktiver Netzkomponenten zur Spannungsstabilisierung in drei ¨oster- reichischen Niederspannungsnetzen mit hoher Dichte an verteilter Energieerzeugung aus erneuer- baren Ressourcen. Die Ergebnisse des Feldbetriebs dienen in dieser Arbeit zur Validierung des Entwicklungsprozesses. Die Beitr¨agedieser Arbeit sind in der Anwendung des Prozesses klar erkennbar. Der schnelle und nahtlose Entwicklungsprozess reduziert die Entwicklungszeit sig- nifikant von sieben auf drei Jahre im Vergleich zur Regelungssystementwicklung eines vergleich- baren Projektes. Durch den Einsatz des Prozesses wurden kritische Fehler in den Regelungssys- temen fr¨uhzeitigidentifiziert. Somit wurde das Risiko eines fehlerhaften Regelungssystems im Feld deutlich reduziert und eine schnelle, sichere und erfolgreiche Regelungssystementwicklung erm¨oglicht. V | This page intentionally left blank | Abstract In order to counteract climate change, a more sustainable energy supply system is inevitable. Therefore, generation from renewable energy sources is currently being introduced into electric energy supply systems in a distributed manner. Automatic control systems are necessary to control these distributed generation units and to ensure a stable supply of electric energy. There is a lack in specific processes and tools for consistent control system engineering because automatic control is new compared to the currently used technology of passively operated distribution grids. In order to fill in this gap, a process for rapid control prototyping for networked smart grid systems is developed, implemented, and validated in this thesis. At first, a concept is elaborated that combines the single steps of control system development to produce a consistent development process, with a focus on rapidness and risk mitigation during the development and deployment process. This process is then implemented utilizing a specific middleware, which supports the whole development process from the first draft through to the final control system in the field. The major contributions of the developed rapid control prototyping process are its' agile structure, the rapid and seamless field deployment of the developed control algorithms, and the mitigation of risk along the development process. The developed process, together with its middleware, is used in an industrial research and development project to develop low voltage grid control systems by using the following: Co-simulation of power and communication network, controller-hardware- in-the-loop evaluation, seamless field deployment, and simple refactoring of the designed control systems. Several control systems have been developed and are successfully maintaining power quality in three rural Austrian low voltage grids with a high share of renewable energy sources. The field operation results are used for the validation of the developed process in this work. The characteristic contribution of the process is advantageously manifested also in the field application. The process's rapidness and seamless field deployment result in a remarkable reduction of the time- to-field, from seven to three years, in comparison to a related control development project. Further to this, the risk reduction-focused process identified various potentially detrimental malfunctions at an early stage before field deployment. Thus allowing for the successful, safe, rapid development and deployment of control systems. VII | This page intentionally left blank | Acknowledgement Should a Ph.D. thesis contain an acknowledgement? | This is what a Ph.D. candidate might ask themselves at a certain time. As you are currently reading mine, you can see that I think it should be contained in my thesis. This acknowledgement is not only for expressing my gratitude for the support I received in the creation of the thesis. For me, the time as a Ph.D. candidate was a journey with many experiences that involved learning, discussions, doubt, exchange, change, success, and personal evolution. Most relevant along the way were the innumerable people that accompanied me with their motivation, support, and inspiration. For all these things, especially the companionship along the way, I want to express my gratitude. Foremost, I want to thank my colleagues from TU Wien and especially Friederich Kupzog, who introduced me to the field of future energy systems by providing me with a topic for my master thesis and hiring me to join his research group at TU Wien over a big portion of ribs. Thank you, Friederich, for the chances you have given me, for your motivation and trust, and for being my boss, colleague, and mentor for all the years. Furthermore, I want to thank my colleagues at Siemens CT Austria, especially Ralf, Alfred, Tobias, and Andreas, for the insights and opportunities that they have given me, their technical brilliance, their motivating words, and the ongoing cooperation. Special thanks go to the Austrian Institute of Technology and my colleagues there for supporting me with my thesis and also to OFFIS in Germany. At OFFIS, I want to thank Sebastian Lehnhoff, Sebastian Rohjans, and their colleagues for hosting and supporting me and for introducing me to the North German traditions. I also want to thank my Ph.D. supervisor, Dietmar Dietrich, for his trust in me and his experi- enced, unconstrained, and open guidance. Finally, I want to thank my dear family and my beloved darling for supporting me in all of my decisions and for encouraging me wherever and whenever they could. Mario Faschang Vienna | June 29, 2015 IX | This page intentionally left blank | Table of Contents 1 Introduction 1 1.1 Classical Electric Energy Supply Systems . .1 1.2 Paradigm Shift in Modern Electric Energy Supply Systems . .4 1.2.1 Changes in Power Generation Infrastructure . .4 1.2.2 Changes in the Energy Distribution System . .6 1.3 Challenges