The Functional Equation

Total Page:16

File Type:pdf, Size:1020Kb

The Functional Equation 18.785 Number theory I Fall 2019 Lecture #17 11/4/2019 17 The functional equation In the previous lecture we proved that the Riemann zeta function ζ(s) has an Euler product and an analytic continuation to the right half-plane Re(s) > 0. In this lecture we complete the picture by deriving a functional equation that relates the values of ζ(s) to those of ζ(1 − s). This will then also allow us to extend ζ(s) to a meromorphic function on C that is holomorphic except for a simple pole at s = 1. 17.1 Fourier transforms and Poisson summation A key tool we will use to derive the functional equation is the Poisson summation formula, a result from harmonic analysis that we now recall. 1 Definition 17.1. A Schwartz function on R is a complex-valued C function f : R ! C that decays rapidly to zero: for all m; n 2 Z≥0 we have m (n) sup x f (x) < 1; x2R (n) where f denotes the nth derivative of f. The Schwartz space S(R) of all Schwartz functions on R is a (non-unital) C-algebra of infinite dimension. Example 17.2. All compactly supported C1 functions are Schwartz functions, as is the Gaussian function g(x) := e−πx2 . Non-examples include functions that do not tend to zero as x ! ±∞ (such as polynomials), and functions like (1 + x2n)−1 and e−x2 sin(ex2 ) that either do not tend to zero quickly enough, or have derivatives that do not tend to zero as x ! ±∞. p Remark 17.3. For any p 2 R≥1, the Schwartz space S(R) is contained in the space L (R) of functions on f : ! for which the Lebesgue integral R jf(x)jpdx exists. The space R C R p p R p 1=p L (R) is a complete normed C-vector space under the L -norm kfkp := ( jf(x)j dx) , R p and is thus a Banach space. The Schwartz space S(R) is not complete under the L -norm, p but it is dense in L (R) (in the subspace topology). One can equip the Schwartz space with a translation-invariant metric of its own under which it is a complete metric space (and thus a Fr´echet space, since it is also locally convex), but the topology of S(R) will not concern n us here. Similar comments apply to S(R ). It follows immediately from the definition and standard properties of the derivative that the Schwartz space S(R) is closed under differentiation, multiplication by polynomials, and linear change of variable. It is also closed under convolution: for any f; g 2 S(R) the function Z (f ∗ g)(x) := f(y)g(x − y)dy R is also an element of S(R). Convolution is commutative, associative, and bilinear. Definition 17.4. The Fourier transform of a Schwartz function f 2 S(R) is the function Z f^(y) := f(x)e−2πixydx; R Andrew V. Sutherland which is also a Schwartz function [1, Thm. 5.1.3]. We can recover f(x) from f^(y) via the inverse transform Z f(x) = f^(y)e+2πixydy; R see [1, Thm. 5.1.9] for a proof of this fact. The maps f 7! f^ and f^ 7! f are thus inverse linear operators on S(R) (they are also continuous in the metric topology of S(R) and thus homeomorphisms). Remark 17.5. The invertibility of the Fourier transform on the Schwartz space S(R) is 1 a key motivation for its definition. For functions in L (R) (the largest space of functions for which our definition of the Fourier transform makes sense), the Fourier transform of a smooth function decays rapidly to zero, and the Fourier transform of a function that decays rapidly to zero is smooth; this leads one to consider the subspace S(R) of smooth functions 1 that decay rapidly to zero. One can show that S(R) is the largest subspace of L (R) closed under multiplication by polynomials on which the Fourier transform is invertible.1 The Fourier transform changes convolutions into products, and vice versa. We have f[∗ g = f^g^ and fgc = f^∗ g;^ for all f; g 2 S(R) (see Problem Set 8). One can thus view the Fourier transform as an isomorphism of (non-unital) C-algebras that sends (S(R); +; ×) to (S(R); +; ∗). 1 ^ y Lemma 17.6. For all a 2 R>0 and f 2 S(R), we have f\(ax)(y) = a f( a ). Proof. Applying the substitution t = ax yields Z 1 Z 1 y f\(ax)(y) = f(ax)e−2πixydx = f(t)e−2πity=adt = f^ : R a R a a d ^ d\ ^ Lemma 17.7. For f 2 S(R) we have dy f(y) = −2πi xf\(x)(y) and dx f(x)(y) = 2πiyf(y). Proof. Noting that xf 2 S(R), the first identity follows from Z Z d ^ d −2πixy −2πixy dy f(y) = dy f(x)e dx = f(x)(−2πix)e dx = −2πi xf\(x)(y); R R since we may differentiate under the integral via dominated convergence. For the second, we note that limx→±∞ f(x) = 0, so integration by parts yields Z Z d\ 0 −2πixy −2πixy ^ dx f(x)(y) = f (x)e dx = 0 − f(x)(−2πiy)e dx = 2πiyf(y): R R The Fourier transform is compatible with the inner product hf; gi := R f(x)g(x)dx on 2 R L (R) (which contains S(R)). Indeed, we can easily derive Parseval's identity: Z Z Z Z hf; gi = f(x)g(x)dx = f^(y)g(x)e+2πixydxdy = f^(y)g^(y)dy = hf;^ g^i; R R R R which when applied to g = f yields Plancherel's identity: 2 ^ ^ ^ 2 kfk2 = hf; fi = hf; fi = kfk2; R 2 1=2 2 where kfk2 = ( jf(x)j dx) is the L -norm. For number-theoretic applications there is R an analogous result due to Poisson. 1I thank Keith Conrad and Terry Tao for clarifying this point. 18.785 Fall 2019, Lecture #17, Page 2 Theorem 17.8 (Poisson Summation Formula). For all f 2 S(R) we have the identity X X f(n) = f^(n): n2Z n2Z Proof. We first note that both sums are well defined; the rapid decay property of Schwartz functions guarantees absolute convergence. Let F (x) := P f(x + n). Then F is a n2Z periodic C1-function, so it has a Fourier series expansion X 2πinx F (x) = cne ; n2Z with Fourier coefficients Z 1 Z 1 Z −2πint X −2πint −2πint cn = F (t)e dt = f(t + m)e dt = f(t)e dt = f^(n): 0 0 m2Z R We then note that X X X f(n) = F (0) = cn = f^(n): n2Z n2Z n2Z Finally, we note that the Gaussian function e−πx2 is its own Fourier transform. Lemma 17.9. Let g(x) := e−πx2 . Then g^(y) = g(y). Proof. The function g(x) satisfies the first order ordinary differential equation g0 + 2πxg = 0; (1) with initial value g(0) = 1. Multiplying both sides by −i and taking Fourier transforms yields 0 0 0 −i(gb + 2πxgc) = −i(2πixg^ + ig^ ) =g ^ + 2πxg^ = 0; via Lemma 17.7. Sog ^ also satisfies (1), andg ^(0) = R e−πx2 dx = 1, sog ^ = g. R 17.1.1 Jacobi's theta function We now define the theta function2 X 2 Θ(τ) := eπin τ : n2Z The sum is absolutely convergent for im τ > 0 and thus defines a holomorphic function on the upper half plane. It is easy to see that Θ(τ) is periodic modulo 2, that is, Θ(τ + 2) = Θ(τ); but it it also satisfies another functional equation. p Lemma 17.10. For all a 2 R>0 we have Θ(ia) = Θ(i=a)= a. p Proof. Put g(x) := e−πx2 and h(x) := g( ax) = e−πx2a. Lemmas 17.6 and 17.9 imply p p p p p h^(y) = g\( ax)(y) =g ^y= a= a = gy= a= a: Plugging τ = ia into Θ(τ) and applying Poisson summation (Theorem 17.8) yields X 2 X X X p p p Θ(ia) = e−πn a = h(n) = h^(n) = gn= a= a = Θ(i=a)= a: n2Z n2Z n2Z n2Z 2The function Θ(τ) we define here is a special case of one of four parameterized families of theta functions Θi(z : τ) originally defined by Jacobi for i = 0; 1; 2; 3, which play an important role in the theory of elliptic functions and modular forms; in terms of Jacobi's notation, Θ(τ) = Θ3(0; τ). 18.785 Fall 2019, Lecture #17, Page 3 17.1.2 Euler's gamma function You are probably familiar with the gamma function Γ(s), which plays a key role in the functional equation of not only the Riemann zeta function but many of the more general zeta functions and L-series we wish to consider. Here we recall some of its analytic properties. We begin with the definition of Γ(s) as a Mellin transform. Definition 17.11. The Mellin transform of a function f : R>0 ! C is the complex function defined by Z 1 M(f)(s) := f(t)ts−1dt; 0 whenever this integral converges. It is holomorphic on Re s 2 (a; b) for any interval (a; b) in R 1 σ−1 which the integral 0 jf(t)jt dt converges for all σ 2 (a; b).
Recommended publications
  • On the Stability of a Cauchy Type Functional Equation
    Demonstr. Math. 2018; 51:323–331 Research Article Open Access Abbas Najati, Jung Rye Lee*, Choonkil Park, and Themistocles M. Rassias On the stability of a Cauchy type functional equation https://doi.org/10.1515/dema-2018-0026 Received May 31, 2018; accepted November 11, 2018 Abstract: In this work, the Hyers-Ulam type stability and the hyperstability of the functional equation (︁ x + y )︁ (︁ x − y )︁ f + xy + f − xy = f(x) 2 2 are proved. Keywords: Hyers-Ulam stability, additive mapping, hyperstability, topological vector space MSC: 39B82, 34K20, 26D10 1 Introduction The functional equation (ξ) is called stable if any function g satisfying the equation (ξ) approximately, is near to a true solution of (ξ). Ulam, in 1940 [1], introduced the stability of homomorphisms between two groups. More precisely, he proposed the following problem: given a group (G1,.), a metric group (G2, *, d) and a positive number ϵ, does there exist a δ > 0 such that if a function f : G1 ! G2 satisfies the inequal- ity d(f (x.y), f (x) * f(y)) < δ for all x, y 2 G1, then there exists a homomorphism T : G1 ! G2 such that d(f(x), T(x)) < ϵ for all x 2 G1? If this problem has a solution, we say that the homomorphisms from G1 to G2 are stable. In 1941, Hyers [2] gave a partial solution of Ulam’s problem for the case of approximate addi- tive mappings under the assumption that G1 and G2 are Banach spaces. Aoki [3] and Rassias [4] provided a generalization of the Hyers’ theorem for additive and linear mappings, respectively, by allowing the Cauchy difference to be unbounded.
    [Show full text]
  • Analytic Continuation of Massless Two-Loop Four-Point Functions
    CERN-TH/2002-145 hep-ph/0207020 July 2002 Analytic Continuation of Massless Two-Loop Four-Point Functions T. Gehrmanna and E. Remiddib a Theory Division, CERN, CH-1211 Geneva 23, Switzerland b Dipartimento di Fisica, Universit`a di Bologna and INFN, Sezione di Bologna, I-40126 Bologna, Italy Abstract We describe the analytic continuation of two-loop four-point functions with one off-shell external leg and internal massless propagators from the Euclidean region of space-like 1 3decaytoMinkowskian regions relevant to all 1 3and2 2 reactions with one space-like or time-like! off-shell external leg. Our results can be used! to derive two-loop! master integrals and unrenormalized matrix elements for hadronic vector-boson-plus-jet production and deep inelastic two-plus-one-jet production, from results previously obtained for three-jet production in electron{positron annihilation. 1 Introduction In recent years, considerable progress has been made towards the extension of QCD calculations of jet observables towards the next-to-next-to-leading order (NNLO) in perturbation theory. One of the main ingredients in such calculations are the two-loop virtual corrections to the multi leg matrix elements relevant to jet physics, which describe either 1 3 decay or 2 2 scattering reactions: two-loop four-point functions with massless internal propagators and→ up to one off-shell→ external leg. Using dimensional regularization [1, 2] with d = 4 dimensions as regulator for ultraviolet and infrared divergences, the large number of different integrals6 appearing in the two-loop Feynman amplitudes for 2 2 scattering or 1 3 decay processes can be reduced to a small number of master integrals.
    [Show full text]
  • An Explicit Formula for Dirichlet's L-Function
    University of Tennessee at Chattanooga UTC Scholar Student Research, Creative Works, and Honors Theses Publications 5-2018 An explicit formula for Dirichlet's L-Function Shannon Michele Hyder University of Tennessee at Chattanooga, [email protected] Follow this and additional works at: https://scholar.utc.edu/honors-theses Part of the Mathematics Commons Recommended Citation Hyder, Shannon Michele, "An explicit formula for Dirichlet's L-Function" (2018). Honors Theses. This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. For more information, please contact [email protected]. An Explicit Formula for Dirichlet's L-Function Shannon M. Hyder Departmental Honors Thesis The University of Tennessee at Chattanooga Department of Mathematics Thesis Director: Dr. Andrew Ledoan Examination Date: April 9, 2018 Members of Examination Committee Dr. Andrew Ledoan Dr. Cuilan Gao Dr. Roger Nichols c 2018 Shannon M. Hyder ALL RIGHTS RESERVED i Abstract An Explicit Formula for Dirichlet's L-Function by Shannon M. Hyder The Riemann zeta function has a deep connection to the distribution of primes. In 1911 Landau proved that, for every fixed x > 1, X T xρ = − Λ(x) + O(log T ) 2π 0<γ≤T as T ! 1. Here ρ = β + iγ denotes a complex zero of the zeta function and Λ(x) is an extension of the usual von Mangoldt function, so that Λ(x) = log p if x is a positive integral power of a prime p and Λ(x) = 0 for all other real values of x.
    [Show full text]
  • Bernstein's Analytic Continuation of Complex Powers of Polynomials
    Bernsteins analytic continuation of complex p owers c Paul Garrett garrettmathumnedu version January Analytic continuation of distributions Statement of the theorems on analytic continuation Bernsteins pro ofs Pro of of the Lemma the Bernstein p olynomial Pro of of the Prop osition estimates on zeros Garrett Bernsteins analytic continuation of complex p owers Let f b e a p olynomial in x x with real co ecients For complex s let n s f b e the function dened by s s f x f x if f x s f x if f x s Certainly for s the function f is lo cally integrable For s in this range s we can dened a distribution denoted by the same symb ol f by Z s s f x x dx f n R n R the space of compactlysupp orted smo oth realvalued where is in C c n functions on R s The ob ject is to analytically continue the distribution f as a meromorphic distributionvalued function of s This typ e of question was considered in several provo cative examples in IM Gelfand and GE Shilovs Generalized Functions volume I One should also ask ab out analytic continuation as a temp ered distribution In a lecture at the Amsterdam Congress IM Gelfand rened this question to require further that one show that the p oles lie in a nite numb er of arithmetic progressions Bernstein proved the result in under a certain regularity hyp othesis on the zeroset of the p olynomial f Published in Journal of Functional Analysis and Its Applications translated from Russian The present discussion includes some background material from complex function theory and
    [Show full text]
  • Applied Mathematics Letters Exponential Functional Equation On
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Applied Mathematics Letters 23 (2010) 156–160 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Exponential functional equation on spheres Justyna Sikorska Institute of Mathematics, Silesian University, Bankowa 14, PL-40-007 Katowice, Poland article info a b s t r a c t Article history: We study the exponential functional equation f .x C y/ D f .x/f .y/ on spheres in real Received 28 February 2009 normed linear spaces. Regardless of the solutions of this equation, which are already Received in revised form 4 September 2009 known, we investigate its stability and consider the pexiderized version of it. Accepted 4 September 2009 ' 2009 Elsevier Ltd. All rights reserved. Keywords: Conditional exponential functional equation Stability Approximation 1. Introduction Alsina and Garcia-Roig [1] considered the conditional functional equation f .x C y/ D f .x/ C f .y/ whenever kxk D kyk (1) with a continuous function f : X ! Y mapping a real inner product space .X; h·; ·i/ with dim X ≥ 2 into a real topological vector space Y . In [2], Szabó solved (1) in case where .X; k · k/ is a real normed linear space with dim X ≥ 3 and .Y ; C/ is an Abelian group. In [3], Ger and the author proceeded with the study of (1) with the norm replaced by an abstract function fulfilling suitable conditions. We dealt also with more general structures than those considered in [1,2].
    [Show full text]
  • [Math.AG] 2 Jul 2015 Ic Oetime: Some and Since Time, of People
    MONODROMY AND NORMAL FORMS FABRIZIO CATANESE Abstract. We discuss the history of the monodromy theorem, starting from Weierstraß, and the concept of monodromy group. From this viewpoint we compare then the Weierstraß, the Le- gendre and other normal forms for elliptic curves, explaining their geometric meaning and distinguishing them by their stabilizer in PSL(2, Z) and their monodromy. Then we focus on the birth of the concept of the Jacobian variety, and the geometrization of the theory of Abelian functions and integrals. We end illustrating the methods of complex analysis in the simplest issue, the difference equation f(z)= g(z + 1) g(z) on C. − Contents Introduction 1 1. The monodromy theorem 3 1.1. Riemann domain and sheaves 6 1.2. Monodromy or polydromy? 6 2. Normalformsandmonodromy 8 3. Periodic functions and Abelian varieties 16 3.1. Cohomology as difference equations 21 References 23 Introduction In Jules Verne’s novel of 1874, ‘Le Tour du monde en quatre-vingts jours’ , Phileas Fogg is led to his remarkable adventure by a bet made arXiv:1507.00711v1 [math.AG] 2 Jul 2015 in his Club: is it possible to make a tour of the world in 80 days? Idle questions and bets can be very stimulating, but very difficult to answer when they deal with the history of mathematics, and one asks how certain ideas, which have been a common knowledge for long time, did indeed evolve and mature through a long period of time, and through the contributions of many people. In short, there are three idle questions which occupy my attention since some time: Date: July 3, 2015.
    [Show full text]
  • Chapter 4 the Riemann Zeta Function and L-Functions
    Chapter 4 The Riemann zeta function and L-functions 4.1 Basic facts We prove some results that will be used in the proof of the Prime Number Theorem (for arithmetic progressions). The L-function of a Dirichlet character χ modulo q is defined by 1 X L(s; χ) = χ(n)n−s: n=1 P1 −s We view ζ(s) = n=1 n as the L-function of the principal character modulo 1, (1) (1) more precisely, ζ(s) = L(s; χ0 ), where χ0 (n) = 1 for all n 2 Z. We first prove that ζ(s) has an analytic continuation to fs 2 C : Re s > 0gnf1g. We use an important summation formula, due to Euler. Lemma 4.1 (Euler's summation formula). Let a; b be integers with a < b and f :[a; b] ! C a continuously differentiable function. Then b X Z b Z b f(n) = f(x)dx + f(a) + (x − [x])f 0(x)dx: n=a a a 105 Remark. This result often occurs in the more symmetric form b Z b Z b X 1 1 0 f(n) = f(x)dx + 2 (f(a) + f(b)) + (x − [x] − 2 )f (x)dx: n=a a a Proof. Let n 2 fa; a + 1; : : : ; b − 1g. Then Z n+1 Z n+1 x − [x]f 0(x)dx = (x − n)f 0(x)dx n n h in+1 Z n+1 Z n+1 = (x − n)f(x) − f(x)dx = f(n + 1) − f(x)dx: n n n By summing over n we get b Z b X Z b (x − [x])f 0(x)dx = f(n) − f(x)dx; a n=a+1 a which implies at once Lemma 4.1.
    [Show full text]
  • Introduction to Analytic Number Theory More About the Gamma Function We Collect Some More Facts About Γ(S)
    Math 259: Introduction to Analytic Number Theory More about the Gamma function We collect some more facts about Γ(s) as a function of a complex variable that will figure in our treatment of ζ(s) and L(s, χ). All of these, and most of the Exercises, are standard textbook fare; one basic reference is Ch. XII (pp. 235–264) of [WW 1940]. One reason for not just citing Whittaker & Watson is that some of the results concerning Euler’s integrals B and Γ have close analogues in the Gauss and Jacobi sums associated to Dirichlet characters, and we shall need these analogues before long. The product formula for Γ(s). Recall that Γ(s) has simple poles at s = 0, −1, −2,... and no zeros. We readily concoct a product that has the same behavior: let ∞ 1 Y . s g(s) := es/k 1 + , s k k=1 the product converging uniformly in compact subsets of C − {0, −1, −2,...} because ex/(1 + x) = 1 + O(x2) for small x. Then Γ/g is an entire function with neither poles nor zeros, so it can be written as exp α(s) for some entire function α. We show that α(s) = −γs, where γ = 0.57721566490 ... is Euler’s constant: N X 1 γ := lim − log N + . N→∞ k k=1 That is, we show: Lemma. The Gamma function has the product formulas ∞ N ! e−γs Y . s 1 Y k Γ(s) = e−γsg(s) = es/k 1 + = lim N s . (1) s k s N→∞ s + k k=1 k=1 Proof : For s 6= 0, −1, −2,..., the quotient g(s + 1)/g(s) is the limit as N→∞ of N N ! N s Y 1 + s s X 1 Y k + s e1/k k = exp s + 1 1 + s+1 s + 1 k k + s + 1 k=1 k k=1 k=1 N ! N X 1 = s · · exp − log N + .
    [Show full text]
  • Appendix B the Fourier Transform of Causal Functions
    Appendix A Distribution Theory We expect the reader to have some familiarity with the topics of distribu­ tion theory and Fourier transforms, as well as the theory of functions of a complex variable. However, to provide a bridge between texts that deal with these topics and this textbook, we have included several appendices. It is our intention that this appendix, and those that follow, perform the func­ tion of outlining our notational conventions, as well as providing a guide that the reader may follow in finding relevant topics to study to supple­ ment this text. As a result, some precision in language has been sacrificed in favor of understandability through heuristic descriptions. Our main goals in this appendix are to provide background material as well as mathematical justifications for our use of "singular functions" and "bandlimited delta functions," which are distributional objects not normally discussed in textbooks. A.l Introduction Distributions provide a mathematical framework that can be used to satisfy two important needs in the theory of partial differential equations. First, quantities that have point duration and/or act at a point location may be described through the use of the traditional "Dirac delta function" representation. Such quantities find a natural place in representing energy sources as the forcing functions of partial differential equations. In this usage, distributions can "localize" the values of functions to specific spatial 390 A. Distribution Theory and/or temporal values, representing the position and time at which the source acts in the domain of a problem under consideration. The second important role of distributions is to extend the process of differentiability to functions that fail to be differentiable in the classical sense at isolated points in their domains of definition.
    [Show full text]
  • Introduction. There Are at Least Three Different Problems with Which One Is Confronted in the Study of L-Functions: the Analytic
    L-Functions and Automorphic Representations∗ R. P. Langlands Introduction. There are at least three different problems with which one is confronted in the study of L•functions: the analytic continuation and functional equation; the location of the zeroes; and in some cases, the determination of the values at special points. The first may be the easiest. It is certainly the only one with which I have been closely involved. There are two kinds of L•functions, and they will be described below: motivic L•functions which generalize the Artin L•functions and are defined purely arithmetically, and automorphic L•functions, defined by data which are largely transcendental. Within the automorphic L• functions a special class can be singled out, the class of standard L•functions, which generalize the Hecke L•functions and for which the analytic continuation and functional equation can be proved directly. For the other L•functions the analytic continuation is not so easily effected. However all evidence indicates that there are fewer L•functions than the definitions suggest, and that every L•function, motivic or automorphic, is equal to a standard L•function. Such equalities are often deep, and are called reciprocity laws, for historical reasons. Once a reciprocity law can be proved for an L•function, analytic continuation follows, and so, for those who believe in the validity of the reciprocity laws, they and not analytic continuation are the focus of attention, but very few such laws have been established. The automorphic L•functions are defined representation•theoretically, and it should be no surprise that harmonic analysis can be applied to some effect in the study of reciprocity laws.
    [Show full text]
  • The Complex Dirac Delta, Plemelj Formula, and Integral Representations
    The complex Dirac Delta, Plemelj formula, and integral representations J. Julve IMAFF, Consejo Superior de Investigaciones Cient´ıficas, Serrano 113 bis, Madrid 28006, Spain E-mail: [email protected] R. Cepedello Universitat de Valencia, Burjassot (Valencia), Spain E-mail: [email protected] F. J. de Urr´ıes Universidad de Alcal´ade Henares, Spain E-mail: [email protected] Abstract. The extension of the Dirac Delta distribution (DD) to the complex field is needed for dealing with the complex-energy solutions of the Schr¨odinger equation, typically when calculating their inner products. In quantum scattering theory the DD usually arises as an integral representation involving plane waves of real momenta. We deal with the complex extension of these representations by using a Gaussian regularization. Their interpretation as distributions requires prescribing the integration path and a corresponding space of test functions. An extension of the Sokhotski- Plemelj formula is obtained. This definition of distributions is alternative to the historic one referred to surface integrations on the complex plane. arXiv:1603.05530v1 [math-ph] 17 Mar 2016 PACS numbers: 02.30.+g, 03.65.Db, 03.65.Ge, 03.65.Nk Complex Dirac Delta 2 1. Introduction We consider 1-dimensional quantum barriers of compact support, often referred to as cut-off potentials, and the solutions to the corresponding time-independent Schr¨odinger equation. Besides the real-energy solutions, namely the bound states (negative discrete spectrum) and the scattering states (positive continuum spectrum) or ”Dirac kets”, of well-known physical meaning, there exists a much larger set of complex-energy solutions.
    [Show full text]
  • Polylogarithms and Riemann's Function
    PHYSICAL REVIEW E VOLUME 56, NUMBER 4 OCTOBER 1997 Polylogarithms and Riemann’s z function M. Howard Lee Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 ~Received 12 March 1997! Riemann’s z function has been important in statistical mechanics for many years, especially for the under- standing of Bose-Einstein condensation. Polylogarithms can yield values of Riemann’s z function in a special limit. Recently these polylogarithm functions have unified the statistical mechanics of ideal gases. Our par- ticular concern is obtaining the values of Riemann’s z function of negative order suggested by a physical application of polylogs. We find that there is an elementary way of obtaining them, which also provides an insight into the nature of the values of Riemann’s z function. It relies on two properties of polylogs—the recurrence and duplication relations. The relevance of the limit process in the statistical thermodynamics is described. @S1063-651X~97!01510-9# PACS number~s!: 05.90.1m, 02.90.1p I. INTRODUCTION standard methods. It also lends an interesting insight into the nature of the values of Riemann’s z function. Riemann’s z function perhaps first appeared in statistical mechanics in 1900 in Planck’s theory of the blackbody ra- II. POLYLOGS AND THEIR PROPERTIES diation and then in 1912 in Debye’s theory of the specific heats of solids @1#. Subsequently, this function has played an To show their relationship to Riemann’s z function, we important role in the statistical theory of the ideal Bose gas, shall introduce a convenient integral representation for poly- especially for the understanding of Bose-Einstein condensa- logs Lis(z) of complex numbers s and z @6#, defined by tion ~BEC!@2#.
    [Show full text]