In Search of the Kingdom's Ediacarans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paleo-The Story of Life
PALEO: THE STORY OF LIFE Life on Earth has not always existed as it currently does. The fact that life began on Earth in the first place is miraculous due to the environmental factors needed for its beginnings and sustainability. The relentless pursuit of life over billions of years from small living molecules to complex creatures roaming, flying and swimming throughout the Earth has culminated into the current state of life’s existence as we know it on the planet we call home. Paleo: The Story of Life is a 3,000-square-foot exhibit, spanning 4.6 billion years in scope. The exhibit presents casts of 128 rare fossils, including Lucy, Archaeopteryx and T rex, among many others. Drawn from the world’s foremost fossil collections, the Paleo exhibit showcases casts of rare fossils from the Americas, Europe, Asia, Africa and Australia – skeletons, skulls, claws and eggs gathered from prestigious museums, including the Smithsonian Institution, American Museum of Natural History, Royal Ontario Museum and Carnegie Museum, among others. Rarely available for viewing outside of their respective museums, these compelling artifacts are presented exclusively in Paleo: The Story of Life. Fossils range from the earliest invertebrate marine life through the Triassic, Jurassic and Cretaceous dinosaurs to mammals and prehistoric humans. Paleo: The Story of Life explores the comprehensive story of prehistoric life on Earth. The Paleo exhibit is a visiting exhibit and will be on display through Thursday, May 31, 2018. It is located in the Horowitz Traveling Exhibit Area. The MOST presents Paleo: The Story of Life in association with the International Museum Institute, Inc. -
Challenges in Indian Palaeobiology
Challenges in Indian Palaeobiology Current Status, Recent Developments and Future Directions © BIRBAL SAHNI INSTITUTE OF PALAEOBOTANY, LUCKNOW 226 007, (U.P.), INDIA Published by The Director Birbal Sahni Institute of Palaeobotany Lucknow 226 007 INDIA Phone : +91-522-2740008/2740011/ 2740399/2740413 Fax : +91-522-2740098/2740485 E-mail : [email protected] [email protected] Website : http://www.bsip.res.in ISBN No : 81-86382-03-8 Proof Reader : R.L. Mehra Typeset : Syed Rashid Ali & Madhavendra Singh Produced by : Publication Unit Printed at : Dream Sketch, 29 Brahma Nagar, Sitapur Road, Lucknow November 2005 Patrons Prof. V. S. Ramamurthy Secretary, Department of Science & Technology, Govt. of India Dr. Harsh K. Gupta Formerly Secretary, Department of Ocean Development, Govt. of India Prof. J. S. Singh Chairman, Governing Body, BSIP Prof. G. K. Srivastava Chairman, Research Advisory Committee, BSIP National Steering Committee Dr. N. C. Mehrotra, Director, BSIP - Chairman Prof. R.P. Singh, Vice Chancellor, Lucknow University - Member Prof. Ashok Sahni, Geology Department, Panjab University - Member Prof. M.P. Singh, Geology Department, Lucknow University - Member Dr. M. Sanjappa, Director, Botanical Survey of India - Member Dr. D. K. Pandey, Director (Exlporation), ONGC, New Delhi - Member Dr. P. Pushpangadan, Director, NBRI - Member Prof. S.K. Tandon, Geology Department, Delhi University - Member Dr. Arun Nigvekar, Former Chairman, UGC - Member Dr. K.P.N. Pandiyan, Joint Secretary & Financial Adv., DST - Member Local Organizing Committee Dr. N. C. Mehrotra, Director - Chairman Dr. Jayasri Banerji, Scientist ‘F’ - Convener Dr. A. K. Srivastava, Scientist ‘F’ - Member Dr. Ramesh K. Saxena, Scientist ‘F’ - Member Dr. Archana Tripathi, Scientist ‘F’ - Member Dr. -
Mistaken Point, with Insets Showing Some of the Diverse Ediacaran Macrofossils Present at Mistake Point (Photo: A
Open File NFLD/3320 GEOLOGICAL ASSOCIATION OF CANADA Newfoundland and Labrador Section 2015 FALL FIELD TRIP The Ediacaran fossils of the Avalon Peninsula Alex G. Liu and James Conliffe with contributions from Liam Herringshaw, Jack Matthews, and Duncan McIlroy September 18–20th, 2015 Cover photo: Overview of the fossil bearing bedding planes at Mistaken Point, with insets showing some of the diverse Ediacaran macrofossils present at Mistake Point (photo: A. Liu) GAC Newfoundland and Labrador Section – 2015 Fall Field Trip Ediacaran macrofossils from the Mistaken Point ‘E’ Surface. 2 GAC Newfoundland and Labrador Section – 2015 Fall Field Trip TABLE OF CONTENTS INTRODUCTION AND OVERVIEW 4 ACKNOWLEDGEMENTS 4 SAFETY INFORMATION 5 MISTAKEN POINT ECOLOGICAL RESERVE (MPER) 7 PART 1: BACKGROUND MATERIAL 9 INTRODUCTION 9 Introduction to the Neoproterozoic‒Phanerozoic Transition 9 Stratigraphy, Structural Geology, and Depositional Environment of the Avalon Peninsula 13 EDICARAN PALEONTOLOGY OF THE AVALON PENINSULA 16 Preservation of Ediacaran macrofossils 16 The Avalon Assemblage 18 Current research into the Mistaken Point Ediacaran Fossils 21 PART 2: FIELD TRIP ITINERARY 24 Day One – Harbour Main and Spaniard’s Bay 25 Day Two – Mistaken Point Ecological Reserve 31 Day Three – Mistaken Point Ecological Reserve and Ferryland 46 INVENTORY OF TAXA IN MISTAKEN POINT ECOLOGICAL RESERVE 53 REFERENCES 54 3 GAC Newfoundland and Labrador Section – 2015 Fall Field Trip INTRODUCTION AND OVERVIEW The Mistaken Point Ecological Reserve (Fig. 1) is home to the some of the world’s most impressive Ediacaran fossil assemblages. Large bedding planes covered in thousands of exceptionally preserved specimens can be found in situ throughout a continuous ~2 km succession of sedimentary strata. -
B Iota Ediacárica, Los Primeros Eumetazoos Del Registro Fósil
B iota ediacárica, los primeros eumetazoos del registro fósil Roberto Díaz Sibaja Laboratorio de Paleontología, Facultad de Biología, UMSNH Resumen La biota ediacárica representa uno de los mayores hitos en la historia evolutiva del planeta, pues contiene algunas de las primeras formas de vida animal pluricelular macroscópica bien conocida en el registro fósil y que presenta gran diversidad morfológica e interacciones ecológicas complejas, además de poseer integrantes microscópicos de gran relevancia evolutiva como los posibles primeros animales triploblásticos. Su posición estratigráfica corresponde con el final del Neoprotero- zoico, tiempo de aparición en el registro fósil de algunos de los primeros animales eumetazoos. La mayoría de los planes corporales de los organismos macroscópicos del Ediacárico no tienen equivalentes modernos e incluyen simetrías triradiales, octoradiales y fractales. La biota ediacárica vio su final al evolucionar los primeros organismos macrodepredadores con exoesqueletos que luego dominarían los ecosistemas del Fanerozoico. Palabras clave : Ediacárico. Pluricelularidad. Animales. Paleontología. Evolución. Ciencia Nicolaita # 66 41 Diciembre de 2015 Biota ediacárica, los primeros eumetazoos del registro fósil Abstract Ediacaran biota represents one of the biggest milestones on the earth’s evolutionary history. It contains the first well known pluricellular macroscopic animals in the fossil record, as well as very important microscopic members such as the oldest putative triplobastic animal and embryos. Its stratigraphic position corresponds with the upper Neoproterozoic, the time of origin of the first eumetazoan animals. Most of the body plans of the ediacaran macroscopic organisms have no modern equivalents, and includes triradial, octoradial and fractal symmetries. The ediacaran biota saw its end with the evolution of the first macropredatorial organisms, wich in turn will dominate Phanerozoic ecosystems. -
The Correlation Between Macroscopic Algae and Metazoans in the Ediacaran: a Case Study on the Wenghui Biota in Northeastern Guizhou, South China Y
This article was downloaded by: [University of Tokyo] On: 17 November 2014, At: 16:21 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/taje20 The correlation between macroscopic algae and metazoans in the Ediacaran: a case study on the Wenghui biota in northeastern Guizhou, South China Y. Wanga, Y. Wangb, W. Duc & X. Wangb a School of Resources and Environments, Guizhou University, Guiyang 550025, PR China b School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China c Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153–8902, Japan Published online: 19 Sep 2014. To cite this article: Y. Wang, Y. Wang, W. Du & X. Wang (2014) The correlation between macroscopic algae and metazoans in the Ediacaran: a case study on the Wenghui biota in northeastern Guizhou, South China, Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia, 61:7, 967-977, DOI: 10.1080/08120099.2014.956231 To link to this article: http://dx.doi.org/10.1080/08120099.2014.956231 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. -
Charnia and the Evolution of Early Life
Leicester’s fossil celebrity: Charnia and the evolution of early life Programme Leicester Literary and Philosophical Society Section C (Geology) in conjunction with Dept of Geology, University of Leicester and Leicester Museums and Galleries Saturday Seminar 10 March 2007 Bennett Building LT1, University of Leicester ‘Charnia: life restoration’ by Mark Evans. Introduction The Leicester Literary and Philosophical Society Section C (Geology) in conjunction with the University of Leicester and Leicester Museums and Galleries would like to present a symposium on the Precambrian fossil biota preserved in Charnwood Forest and how its discovery is of major international significance. Charnia and Charniodiscus were the first ‘Ediacarans’ to be recognised as the macroscopic remains of Precambrian life, even before the significance of the famous Australian biota was realised. (Ediacarans are bizarre extinct multicellular organisms which may, or may not, be the first fossil animals). This symposium will highlight the global importance of the Ediacaran biota from Charnwood Forest. 2007 and 2008 mark the 50th anniversaries of the discovery and description of the biota, so it is an ideal time to celebrate Charnia and the Charnwood Ediacarans. The Charnwood fossils continue to generate controversy and debate, and the latest hi-tech methods are providing exciting new insights into their evolutionary significance. This and other exciting science will be presented during the symposium by distinguished speakers and researchers from Australia, Canada, Ireland, and the UK. An exhibition of local and international Ediacaran fossils called ‘Charni@50’ will be held at Leicester’s New Walk Museum and Art Gallery from 10 March – 15 April 2007. The exhibition will be opened at an evening reception which will commence directly after the close of the symposium. -
Redalyc.First Ediacaran Fauna Occurrence In
Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil BARROSO, FRANCISCO R.G.; SOMÁLIA S. VIANA, MARIA; DE LIMA FILHO, MARIO F.; AGOSTINHO, SONIA M.O. First Ediacaran Fauna Occurrence in Northeastern Brazil (Jaibaras Basin, ?Ediacaran-Cambrian): Preliminary Results and Regional Correlation Anais da Academia Brasileira de Ciências, vol. 86, núm. 3, enero-septiembre, 2014, pp. 1029-1042 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32731840003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2014) 86(3): 1029-1042 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420130162 www.scielo.br/aabc First Ediacaran Fauna Occurrence in Northeastern Brazil (Jaibaras Basin, ?Ediacaran-Cambrian): Preliminary Results and Regional Correlation FRANCISCO R.G. BARROSO1, MARIA SOMÁLIA S. VIANA2, MARIO F. DE LIMA FILHO1 and SONIA M.O. AGOSTINHO1 1Universidade Federal de Pernambuco/UFPE, Laboratório de Geologia Sedimentar e Ambiental/LAGESE, Av. Acadêmico Hélio Ramos, s/n, Cidade Universitária, 59740-530 Recife, PE, Brasil 2Universidade Estadual Vale do Acaraú, Museu Dom José, Laboratório de Paleontologia, Av. Dom José Tumpinambá, 878, Centro, 62010-290 Sobral, CE, Brasil Manuscript received on May 24, 2013; accepted for publication on September 9, 2013 ABSTRACT This study reports the first known occurrence of the Ediacaran fauna in northeastern Brazil (at Pacujá Municipality, northwestern state of Ceará) and presents preliminary interpretations of its significance. -
Age of Neoproterozoic Bilatarian Body and Trace Fossils, White Sea, Russia: Implications for Metazoan Evolution M
R EPORTS Age of Neoproterozoic Bilatarian Body and Trace Fossils, White Sea, Russia: Implications for Metazoan Evolution M. W. Martin,1* D. V. Grazhdankin,2† S. A. Bowring,1 D. A. D. Evans,3‡ M. A. Fedonkin,2 J. L. Kirschvink3 A uranium-lead zircon age for a volcanic ash interstratified with fossil-bearing, shallow marine siliciclastic rocks in the Zimnie Gory section of the White Sea region indicates that a diverse assemblage of body and trace fossils occurred before 555.3 Ϯ 0.3 million years ago. This age is a minimum for the oldest well-documented triploblastic bilaterian Kimberella. It also makes co-occurring trace fossils the oldest that are reliably dated. This determination of age implies that there is no simple relation between Ediacaran diversity and the carbon isotopic composition of Neoproterozoic seawater. The terminal Neoproterozoic interval is char- seawater (5–7), and the first appearance and acterized by a period of supercontinent amal- subsequent diversification of metazoans. Con- gamation and dispersal (1, 2), low-latitude struction of a terminal Neoproterozoic bio- glaciations (3, 4), chemical perturbations of stratigraphy has been hampered by preserva- www.sciencemag.org SCIENCE VOL 288 5 MAY 2000 841 R EPORTS tional, paleoenvironmental, and biogeograph- served below a glacial horizon in the Mack- Russia (22), which account for 60% of the ic factors (5, 8). Global biostratigraphic cor- enzie Mountains of northwest Canada have well-described Ediacaran taxa (23)—have relations within the Neoproterozoic are been interpreted as possible metazoans and neither numerical age nor direct chemostrati- tenuous and rely on sparse numerical chro- have been considered the oldest Ediacaran graphic constraints. -
Precise U-Pb Age Constrains on the Ediacaran Biota in Podolia, East European Platform, Ukraine Received: 2 March 2018 Y
www.nature.com/scientificreports OPEN Precise U-Pb age constrains on the Ediacaran biota in Podolia, East European Platform, Ukraine Received: 2 March 2018 Y. Soldatenko 1,2, A. El Albani1, M. Ruzina2, C. Fontaine1, V. Nesterovsky3, J.-L. Paquette4, Accepted: 19 December 2018 A. Meunier1 & M. Ovtcharova 5 Published: xx xx xxxx The Neoproterozoic Era was characterized by rapidly changing paleogeography, global climate changes and especially by the rise and fall of the Ediacaran macro-biota. The correlation between disparate Ediacaran fossil-bearing localities and the tentative reconstruction of their paleoenvironmental and paleogeographic contexts are usually complicated by the lack of precise and accurate age data. For this reason, Neoproterozoic sedimentary sections associating Ediacaran biota fossils and fresh volcanic material are especially valuable for radioisotopic dating. Our research in the Podolya Basin, southwestern Ukraine, revealed the presence of four Neoproterozoic volcanic ash deposits (potassium- bentonite layers) within Ediacaran fossil-bearing siliciclastic rocks of the Mohyliv-Podilskyi Group. We used zircon U-Pb LA-ICPMS and CA-ID-TIMS methods to date two of those layers. The results indicate that a diverse assemblage of body and trace Ediacaran fossils occurred as early as 556.78 ± 0.18 million years (Ma) ago. By combining morphological evidence and new age determinations, we suggest a closer paleobiogeographical relationship between the Ukrainian Ediacaran assemblage and the Avalon paleocontinent than previously estimated. Te Neoproterozoic Era corresponds to a period of global changes related to the breakup of the supercontinent Rodinia and to protracted global glacial events1. In terms of biological evolution, it is associated with deep inno- vations likely related to the so-called ‘second great oxygenation event’ (NOE)2, and is marked by the rise and fall of the Ediacaran biota3–8. -
Medusoid Cnidarians from the Montral-Alcover Lagerstätten (Triassic), Northeastern Spain
City University of New York (CUNY) CUNY Academic Works Publications and Research Baruch College 2011 Medusoid cnidarians from the Montral-Alcover Lagerstätten (Triassic), Northeastern Spain Aldemaro Romero Jr. CUNY Bernard M Baruch College Raymond R. Rogers Lisa A. Gershwin How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/bb_pubs/392 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] &%8%00)6-% &EVGIPSREKIRIV -772 Medusoid Cnidarians from the Montral-Alcover Lagerstätten (Triassic), Northeastern Spain Aldemaro Romero*, Raymond R. Rogers** & Lisa A. Gershwin*** *College of Arts and Sciences, Southern Illinois University Edwardsville, Peck Hall 3409, Edwardsville, IL 62026-1608, USA ([email protected]) **Geology Department, Macalester College, St. Paul, MN 55105-1899, USA ([email protected]) *** Curator of Natural Sciences, Queen Victoria Museum and Art Gallery, 2 Wellington Street, Launceston, Tasmania 7250, Australia ([email protected]) ABSTRACT – Ladinian. Tarracodiskus viai, T. villaltai, and Heliobranchia catalaunica are described as new genera and species. These specimens present a number of systematic challenges due to our lack of knowledge with regard to their life cycle, soft anatomy, phenotypic plasti- city, convergent characters, and paucity in the fossil record. Their mode of preservation is consistent with that of other fauna from the Montral-Alcover locality. KEY WORDS – Medusoid cnidaria. Fossil impressions. Upper Muschelkalk Ladinian, NE Spain. RESUMEN – En este trabajo presentamos varias impresiones fósiles de cnidarios, que son nuevos para el Ladiniense español . -
Phyllozoon and Aulozoon: Key Components of a Novel Ediacaran
Geological Magazine Phyllozoon and Aulozoon: key components of www.cambridge.org/geo a novel Ediacaran death assemblage in Bathtub Gorge, Heysen Range, South Australia 1 2 Original Article James G. Gehling and Bruce Runnegar 1 2 Cite this article: Gehling JG and Runnegar B. Palaeontology, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia and Department of Phyllozoon and Aulozoon: key components of a Earth, Planetary and Space Sciences and Molecular Biology Institute, University of California, Los Angeles, CA novel Ediacaran death assemblage in Bathtub 90095-1567, USA Gorge, Heysen Range, South Australia. Geological Magazine https://doi.org/10.1017/ Abstract S0016756821000509 The recognition of fossiliferous horizons both below and above the classical Ediacara levels of Received: 12 December 2020 the Flinders Ranges, South Australia, significantly expands the potential of this candidate Revised: 5 May 2021 Accepted: 10 May 2021 World Heritage succession. Here we document a small window into the biology and taphonomy of the late Ediacaran seafloor within the new Nilpena Sandstone Member of the Rawnsley Keywords: Quartzite in Bathtub Gorge, northern Heysen Range. A 1 m2 slab extracted from the gorge, Phyllozoon; Ediacaran; Australia; now on permanent display at the South Australian Museum, has a death assemblage dominated palaeoecology; taphonomy by the erniettomorph Phyllozoon hanseni Jenkins and Gehling 1978 and a newly named Author for correspondence: macroscopic tubular body fossil – Aulozoon soliorum gen. et sp. nov. – on its fine sandstone Bruce Runnegar, Email: [email protected] bed sole. The orientations and juxtaposition of these taxa suggest overprinting of an in situ benthic Phyllozoon community by sand-filled tubes of Aulozoon carried in by a storm wave-base surge. -
Biotextbookch21-29.Pdf
CHAPTER 21 | VIRUSES 551 21 | VIRUSES Figure 21.1 The tobacco mosaic virus (left), seen here by transmission electron microscopy, was the first virus to be discovered. The virus causes disease in tobacco and other plants, such as the orchid (right). (credit a: USDA ARS; credit b: modification of work by USDA Forest Service, Department of Plant Pathology Archive North Carolina State University; scale-bar data from Matt Russell) Chapter Outline 21.1: Viral Evolution, Morphology, and Classification 21.2: Virus Infections and Hosts 21.3: Prevention and Treatment of Viral Infections 21.4: Other Acellular Entities: Prions and Viroids Introduction No one knows exactly when viruses emerged or from where they came, since viruses do not leave historical footprints such as fossils. Modern viruses are thought to be a mosaic of bits and pieces of nucleic acids picked up from various sources along their respective evolutionary paths. Viruses are acellular, parasitic entities that are not classified within any kingdom. Unlike most living organisms, viruses are not cells and cannot divide. Instead, they infect a host cell and use the host’s replication processes to produce identical progeny virus particles. Viruses infect organisms as diverse as bacteria, plants, and animals. They exist in a netherworld between a living organism and a nonliving entity. Living things grow, metabolize, and reproduce. Viruses replicate, but to do so, they are entirely dependent on their host cells. They do not metabolize or grow, but are assembled in their mature form. 21.1 | Viral Evolution, Morphology, and Classification By the end of this section, you will be able to: • Describe how viruses were first discovered and how they are detected • Discuss three hypotheses about how viruses evolved • Recognize the basic shapes of viruses • Understand past and emerging classification systems for viruses Viruses are diverse entities.