Bilirubin Modulates Leukocyte Recruitment to Sites of Inflammation

Total Page:16

File Type:pdf, Size:1020Kb

Bilirubin Modulates Leukocyte Recruitment to Sites of Inflammation Bilirubin modulates leukocyte recruitment to sites of inflammation A dissertation presented by Megan Elizabeth Vogel B.S., Ohio University 2011 To The Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Internal Medicine, Division of Digestive Diseases of the College of Medicine March 2017 Committee Chair: Stephen D. Zucker, M.D. Abstract Background: Bilirubin is the principal end-product of heme catabolism. While generally thought to be little more than a metabolic by-product, there is accumulating epidemiological evidence that higher serum bilirubin levels are associated with a lower incidence of inflammatory disorders such as inflammatory bowel and cardiovascular disease. However, the mechanism(s) by which bilirubin may exert an anti-inflammatory effect remains poorly understood. The transendothelial migration of immune cells to sites of inflammation is a highly- ordered, multi-step process that is initiated when endothelial cells become activated to express adhesion molecules, including Vascular Cell Adhesion Molecule 1 (VCAM-1) and Intercellular Adhesion Molecule 1 (ICAM-1), on their luminal surface. The specific binding of leukocyte integrins to VCAM-1 and/or ICAM-1 triggers endothelial signaling cascades that result in the intracellular generation of superoxide and hydrogen peroxide. These reactive oxygen species (ROS) induce reorganization of the actin cytoskeleton, promoting leukocyte transmigration. There are many disease states in which VCAM-1 and ICAM-1 are believed to play an essential pathogenic role in mediating leukocyte trafficking. As bilirubin is a potent, chain-breaking antioxidant, our central hypothesis is that it exerts an anti-inflammatory effect by disrupting adhesion molecule-mediated leukocyte migration through the scavenging of ROS signaling intermediaries. Aim: To validate the key role played by VCAM-1 and ICAM-1 in the pathogenesis of inflammatory bowel disease and cardiovascular disease and, to elucidate the molecular mechanisms underlying the ameliorating effect of bilirubin on these disorders. ii Methods: In vitro analyses of the mechanisms by which bilirubin impedes the transmigration of human leukocyte cell lines across monolayers of isolated human umbilical vein endothelial cells (HUVEC) were performed using Boyden chamber assay and confocal microscopy to assess adhesion molecule-stimulated ROS generation. Murine models of inflammatory bowel disease (DSS-induced colitis) and cardiovascular disease (LDL receptor-deficient mice; Ldlr -/-) were employed to investigate the effect of bilirubin on local and systemic inflammation (immunohistochemistry, immunoassay), and tissue oxidation (immunofluorescence). Results & Conclusions: Bilirubin, at physiological concentrations ( ≤ 20 µM), was found to dose-dependently block THP-1 (monocyte) and Jurkat (lymphocyte) migration across tumor necrosis factor α-activated HUVEC monolayers, without altering leukocyte binding or cytokine/ chemokine production. Bilirubin also effectively abolished endothelial ROS generation induced by the crosslinking of VCAM-1 or ICAM-1, as validated by treatment with blocking antibodies and with specific inhibitors of VCAM-1 and ICAM-1 signaling. Bilirubin, when administered to mice with DSS-induced colitis, abrogated disease activity, specifically reducing eosinophil, lymphocyte and monocyte infiltration into the colon. Ldlr -/- mice maintained on a high-fat diet showed a marked reduction in atherosclerotic plaque formation when treated with bilirubin, without changes in circulating cholesterol, triglyceride, or cytokine/chemokine levels. Aortic roots from bilirubin-treated animals manifested reduced lipid and collagen deposition, diminished numbers of macrophages, lymphocytes and smooth muscle cells, and decreased protein oxidation, without altered VCAM-1 or ICAM-1 expression. These data support that bilirubin ameliorates inflammatory responses by inhibiting VCAM-1- and ICAM-1-mediated iii leukocyte migration through the scavenging of ROS signaling intermediaries, suggesting a potential mechanism for the anti-inflammatory effects of bilirubin. iv Copyright Notice Chapters II and III of this dissertation are adaptations of manuscripts published in the open access journals, American Journal of Physiology - Gastrointestintal and Liver Physiology and, the Journal of the American Heart Association. The American Journal of Physiology permits whole published articles to be reproduced in dissertations with the requirement of full citation. The Journal of the American Heart Association distributes under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution, and reproduction in any medium, provided the original work and authors are credited. The citation for each article can be found on the title page of the corresponding chapter. v Acknowledgements This dissertation would not be possible without the tremendous support and guidance from many individuals. I would like to express sincere gratitude to: My mentor, Dr. Stephen Zucker, who has been tremendously supportive since day one. Your enthusiasm for science, more specifically bilirubin and its many characteristics is how I strive to be with all projects I may endeavor in the future. Thank you for all your inspiration and guidance throughout my graduate career, whether it was in the laboratory or day to day life challenges. Without your confidence not only in my work but also in me, I would not be where I am today. I am forever grateful for these past five years I got to spend in your laboratory. To my thesis committee members, Drs. George Deepe, David Hui, Alex Lentsch and Florence Rothenberg, whom I significantly appreciate your willingness to serve on my committee. Your feedback and support have been fundamental in guiding me through my dissertation work and in my growth as a confident researcher. My lab mate, Dr. Gila Idelman, who has taught me a plethora of lab techniques, a variety of phrases in Hebrew and Russian, and how to be a team player. Without your guidance, knowledge and expertise in bench work, I still would be miscalculating dilutions. Thank you for always dedicating the time to help me throughout the course of my graduate studies, whether it was enduring long hours of excising aortas or the many failed experiments, you were always there for me and I am beyond grateful. Also, I would like to thank Sue Rouster (“Lab Mom”) for her continuous encouragement and support throughout these last couple of years of my graduate work. Without your words of wisdom and the distraction of upcoming concerts, I would not have survived. Thank you for always reminding me that there is light at the end of the tunnel. vi The Patholobiology and Molecular Medicine program faculty and students, who have listened to my many seminars about bilirubin and provided a diverse and incredible learning environment. I would especially like to thank Heather Anderson for always responding rapidly to my vast array of emails and being an incredible friend and listener. You have made this experience worth the five (plus) years. I would also like to acknowledge my extraordinary and entertaining classmates, Drs. Dusten Unruh and Eleanor Powell, and Jamie Tweedle. Without our laughter during those long hours of studying our first year, I would not have survived. I will forever be grateful for your friendships and always remember, “Hepatocytes!” My family – where do I even begin. My parents, Jeff and Karen, for your support, love, and encouragement I will always be entirely thankful for. Who would have thought that that overly stubborn child of yours who always talked during class would one day go on to graduate with a Ph.D.? You instilled in me, at a young age, to always do what I love, even if it meant being completely different from everyone else. I would not be who (or where) I am today without you both and I love you very much. To my siblings, Jeffrey and Brittany, you have taught me to be persistent and never give up. I am forever appreciative of your love and support, and you both continuously make me proud every day. I love you and thank you for always encouraging my “strange” science endeavors. To the rest of my family and friends, thank you for your constant love and support. The Gauerke’s and Hunt’s, you have shown me nothing but love and encouragement these past few years, and for that I am beyond grateful. Ayrton, thank you for your endless motivation and for being the epitome of following your dreams. Your continuous love and support for me and my life endeavors, means more to me than you’ll ever know Bee. Thank you for laughter and for your music that gets me through the toughest of times! vii Table of Contents Title Page…………………………………………………………………………………… i Abstract …………………………………………………………………………………….. ii Copyright Notice …………………………………………………………………………... v Acknowledgements ………………………………………………………………………... vi Table of Contents ………………………………………………………………..…………. viii List of Figures…………………………………………………………………….………… xiii List of Abbreviations ………………………………………………………………………. xvi Chapter I: Introduction 1 1.1 Introduction to bilirubin .......................................................................................... 2 1.1.1 Discovery of bilirubin .................................................................................... 2 1.1.2 Structure and properties of bilirubin .............................................................. 2 1.1.3 Bilirubin
Recommended publications
  • Integrin Binding to the Trimeric Interface of CD40L Plays a Critical Role in CD40/CD40L Signaling
    Integrin Binding to the Trimeric Interface of CD40L Plays a Critical Role in CD40/CD40L Signaling This information is current as Yoko K. Takada, Jessica Yu, Michiko Shimoda and of October 2, 2021. Yoshikazu Takada J Immunol published online 22 July 2019 http://www.jimmunol.org/content/early/2019/07/19/jimmun ol.1801630 Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on October 2, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 22, 2019, doi:10.4049/jimmunol.1801630 The Journal of Immunology Integrin Binding to the Trimeric Interface of CD40L Plays a Critical Role in CD40/CD40L Signaling Yoko K. Takada,*,† Jessica Yu,* Michiko Shimoda,* and Yoshikazu Takada*,† CD40L plays a major role in immune response and is a major therapeutic target for inflammation. Integrin a5b1 and CD40 simultaneously bind to CD40L. It is unclear if a5b1 and CD40 work together in CD40/CD40L signaling or how a5b1 binds to CD40L.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Cell Adhesion Molecules in Normal Skin and Melanoma
    biomolecules Review Cell Adhesion Molecules in Normal Skin and Melanoma Cian D’Arcy and Christina Kiel * Systems Biology Ireland & UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +353-1-716-6344 Abstract: Cell adhesion molecules (CAMs) of the cadherin, integrin, immunoglobulin, and selectin protein families are indispensable for the formation and maintenance of multicellular tissues, espe- cially epithelia. In the epidermis, they are involved in cell–cell contacts and in cellular interactions with the extracellular matrix (ECM), thereby contributing to the structural integrity and barrier for- mation of the skin. Bulk and single cell RNA sequencing data show that >170 CAMs are expressed in the healthy human skin, with high expression levels in melanocytes, keratinocytes, endothelial, and smooth muscle cells. Alterations in expression levels of CAMs are involved in melanoma propagation, interaction with the microenvironment, and metastasis. Recent mechanistic analyses together with protein and gene expression data provide a better picture of the role of CAMs in the context of skin physiology and melanoma. Here, we review progress in the field and discuss molecular mechanisms in light of gene expression profiles, including recent single cell RNA expression information. We highlight key adhesion molecules in melanoma, which can guide the identification of pathways and Citation: D’Arcy, C.; Kiel, C. Cell strategies for novel anti-melanoma therapies. Adhesion Molecules in Normal Skin and Melanoma. Biomolecules 2021, 11, Keywords: cadherins; GTEx consortium; Human Protein Atlas; integrins; melanocytes; single cell 1213. https://doi.org/10.3390/ RNA sequencing; selectins; tumour microenvironment biom11081213 Academic Editor: Sang-Han Lee 1.
    [Show full text]
  • Anti-ITGB1 Monoclonal Antibody, Clone 4C7 (DCABH-1896) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-ITGB1 monoclonal antibody, clone 4C7 (DCABH-1896) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Mouse monoclonal to Integrin beta 1 Antigen Description Integrins alpha-1/beta-1, alpha-2/beta-1, alpha-10/beta-1 and alpha-11/beta-1 are receptors for collagen. Integrins alpha-1/beta-1 and alpha-2/beta-2 recognize the proline-hydroxylated sequence G-F-P-G-E-R in collagen. Integrins alpha-2/beta-1, alpha-3/beta-1, alpha-4/beta-1, alpha-5/beta-1, alpha-8/beta-1, alpha-10/beta-1, alpha-11/beta-1 and alpha-V/beta-1 are receptors for fibronectin. Alpha-4/beta-1 recognizes one or more domains within the alternatively spliced CS-1 and CS-5 regions of fibronectin. Integrin alpha-5/beta-1 is a receptor for fibrinogen. Integrin alpha-1/beta-1, alpha-2/beta-1, alpha-6/beta-1 and alpha-7/beta-1 are receptors for lamimin. Integrin alpha-4/beta-1 is a receptor for VCAM1. It recognizes the sequence Q-I-D-S in VCAM1. Integrin alpha-9/beta-1 is a receptor for VCAM1, cytotactin and osteopontin. It recognizes the sequence A-E-I-D-G-I-E-L in cytotactin. Integrin alpha-3/beta-1 is a receptor for epiligrin, thrombospondin and CSPG4. Alpha-3/beta-1 may mediate with LGALS3 the stimulation by CSPG4 of endothelial cells migration. Integrin alpha-V/beta-1 is a receptor for vitronectin. Beta-1 integrins recognize the sequence R-G-D in a wide array of ligands.
    [Show full text]
  • Review Integrins: Bidirectional, Allosteric Signaling Machines
    Cell, Vol. 110, 673–687, September 20, 2002, Copyright 2002 by Cell Press Integrins: Bidirectional, Review Allosteric Signaling Machines Richard O. Hynes1 and Hynes, 2002). The simplest metazoa, sponges and Howard Hughes Medical Institute cnidaria, have integrins (Burke, 1999; Hughes, 2001) and Center for Cancer Research it is clear that primitive bilateria had at least two integrin Department of Biology ␣␤ heterodimers, the descendents of which persist to Massachusetts Institute of Technology this day in organisms as diverse as flies, nematodes, Cambridge, Massachusetts 02139 and vertebrates (Hynes and Zhao, 2000). Indeed, that is the entire set of integrins in Caenorhabditis elegans; one ␤ subunit and two ␣ subunits forming two integrins. In their roles as major adhesion receptors, integrins Orthologs of these two integrins are recognized in Dro- signal across the plasma membrane in both directions. sophila melanogaster and in vertebrates, although ver- Recent structural and cell biological data suggest tebrates have expanded each set (Figure 1). One set models for how integrins transmit signals between (blue in Figure 1) recognizes the tripeptide sequence, their extracellular ligand binding adhesion sites and RGD, in molecules such as fibronectin and vitronectin their cytoplasmic domains, which link to the cytoskel- in vertebrates and tiggrin in Drosophila, whereas the eton and to signal transduction pathways. Long-range other set (purple in Figure 1) mediates adhesion to base- conformational changes couple these functions via ment membrane laminins. It is plausible that evolution allosteric equilibria. of integrins was necessary to allow the cell-matrix adhe- sion intrinsic to metazoa, and as diploblastic organisms Integrins are the major metazoan receptors for cell adhe- evolved, the two cell layers may have evolved separate sion to extracellular matrix proteins and, in vertebrates, integrins to mediate their asymmetric interactions with also play important roles in certain cell-cell adhesions.
    [Show full text]
  • Molecular Update and Evolving Classification of Large B-Cell Lymphoma
    cancers Review Molecular Update and Evolving Classification of Large B-Cell Lymphoma Arantza Onaindia 1,2,*, Nancy Santiago-Quispe 2, Erika Iglesias-Martinez 2 and Cristina Romero-Abrio 2 1 Bioaraba Health Research Institute, Oncohaematology Research Group, 01070 Vitoria-Gasteiz, Spain 2 Osakidetza Basque Health Service, Araba University Hospital, Pathology Department, 01070 Vitoria-Gasteiz, Spain; [email protected] (N.S.-Q.); [email protected] (E.I.-M.); [email protected] (C.R.-A.) * Correspondence: [email protected]; Tel.: +34-699-639-645 Simple Summary: The development of high-throughput technologies in recent years has increased our understanding of the molecular complexity of lymphomas, providing new insights into the pathogenesis of large B-cell neoplasms and identifying different molecular biomarkers with prog- nostic impact, that lead to the revision of the World Health Organization consensus classification of lymphomas. This review addresses the main histopathological and molecular features of large B-cells lymphomas, providing an overview of the main recent novelties introduced by the last update of the consensus classification. Abstract: Diffuse large B-cell lymphomas (DLBCLs) are aggressive B-cell neoplasms with consid- erable clinical, biologic, and pathologic diversity. The application of high throughput technologies to the study of lymphomas has yielded abundant molecular data leading to the identification of Citation: Onaindia, A.; distinct molecular identities and novel pathogenetic pathways. In light of this new information, Santiago-Quispe, N.; newly refined diagnostic criteria have been established in the fourth edition of the World Health Iglesias-Martinez, E.; Romero-Abrio, Organization (WHO) consensus classification of lymphomas, which was revised in 2016.
    [Show full text]
  • Targeting RGD-Binding Integrins As an Integrative Therapy for Diabetic Retinopathy and Neovascular Age-Related Macular Degeneration
    Progress in Retinal and Eye Research xxx (xxxx) xxx Contents lists available at ScienceDirect Progress in Retinal and Eye Research journal homepage: www.elsevier.com/locate/preteyeres Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration Inge Van Hove a,1, Tjing-Tjing Hu a,1, Karen Beets a, Tine Van Bergen a, Isabelle Etienne a, Alan W. Stitt a,b,*, Elke Vermassen a, Jean H.M. Feyen a a Oxurion NV, Gaston Geenslaan 1, 3001, Heverlee, Belgium b Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Northern Ireland, UK ARTICLE INFO ABSTRACT Keywords: Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. RGD-binding integrin Dysregulation of integrins has been implicated in many pathological processes and consequently, they are Diabetic retinopathy attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins Neovascular age-related macular degeneration play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye Retina disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg- Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specificallyinflammation, vascular leakage, angiogenesis and fibrosis.Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multi­ factorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries.
    [Show full text]
  • Integrin and Gene Network Analysis Reveals That ITGA5 and ITGB1 Are Prognostic in Non-Small-Cell Lung Cancer
    Journal name: OncoTargets and Therapy Article Designation: Original Research Year: 2016 Volume: 9 OncoTargets and Therapy Dovepress Running head verso: Zheng et al Running head recto: ITGA5 and ITGB1 are prognostic in NSCLC open access to scientific and medical research DOI: http://dx.doi.org/10.2147/OTT.S91796 Open Access Full Text Article ORIGINAL RESEARCH Integrin and gene network analysis reveals that ITGA5 and ITGB1 are prognostic in non-small-cell lung cancer Weiqi Zheng Background: Integrin expression has been identified as a prognostic factor in non-small-cell Caihui Jiang lung cancer (NSCLC). This study was aimed at determining the predictive ability of integrins Ruifeng Li and associated genes identified within the molecular network. Patients and methods: A total of 959 patients with NSCLC from The Cancer Genome Atlas Department of Radiation Oncology, Guangqian Hospital, Quanzhou, Fujian, cohorts were enrolled in this study. The expression profile of integrins and related genes were People’s Republic of China obtained from The Cancer Genome Atlas RNAseq database. Clinicopathological characteristics, including age, sex, smoking history, stage, histological subtype, neoadjuvant therapy, radiation therapy, and overall survival (OS), were collected. Cox proportional hazards regression models as well as Kaplan–Meier curves were used to assess the relative factors. Results: In the univariate Cox regression model, ITGA1, ITGA5, ITGA6, ITGB1, ITGB4, and ITGA11 were predictive of NSCLC prognosis. After adjusting for clinical factors, ITGA5 (odds ratio =1.17, 95% confidence interval: 1.05–1.31) andITGB1 (odds ratio =1.31, 95% confidence interval: 1.10–1.55) remained statistically significant. In the gene cluster network analysis, PLAUR, ILK, SPP1, PXN, and CD9, all associated with ITGA5 and ITGB1, were identified as independent predictive factors of OS in NSCLC.
    [Show full text]
  • Integrin Beta 1 Cat#: ET1601-17
    rev. 02/02/16 Integrin beta 1 Cat#: ET1601-17 Product Type: R ecombinant r abbit mono clo nal IgG, primary antibodies Species reactivity: Human, Mouse, Rat, Zebra fish Applications: WB, IHC Molecular Wt.: 140 kDa Description: Integrins are transmembrane receptors that mediate the attachment between a cell and its surroundings, such as other cells or the extracellular matrix (ECM). Integrins are obligate heterodimers containing two distinct chains, called the α (alpha) and β (beta) subunits. The molecular mass of the integrin subunits can vary from 90 kDa to 160 kDa. Beta subunits have four Fig1: Western blot analysis of Integrin beta 1 cysteine-rich repeated sequences. Both α and β subunits bind on different cell lysates using anti-Integrin several divalent cations. Integrins have two main functions: beta 1 antibody at 1/1,000 dilution. Attachment of the cell to the ECM and signal transduction from the Positive control: ECM to the cell. However, they are also involved in a wide range Lane 1: Hela Lane 2: NIH/3T3 of other biological activities, including immune patrolling, cell migration, and binding to cells by certain viruses, such as adenovirus, echovirus, hantavirus, and foot and mouth disease viruses. Research studies have implicated β1 integrin in various activities including embryonic development, blood vessel, skin, bone, and muscle formation, as well as tumor metastasis and angiogenesis. Immunogen: Recombinant protein. Positive control: Fig2: Immunohistochemical analysis of Hela, NIH/3T3, human liver cancer tissue, human colon cancer paraffin-embedded human liver cancer tissue tissue, mouse stomach tissue. using anti-Integrin beta 1 antibody. Counter Subcellular location: stained with hematoxylin.
    [Show full text]
  • CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance Via FAK Signaling
    UCSF UC San Francisco Previously Published Works Title CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Permalink https://escholarship.org/uc/item/1fb2d4gg Journal Cell, 182(3) ISSN 0092-8674 Authors Oguri, Yasuo Shinoda, Kosaku Kim, Hyeonwoo et al. Publication Date 2020-08-01 DOI 10.1016/j.cell.2020.06.021 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Article CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling Graphical Abstract Authors Yasuo Oguri, Kosaku Shinoda, Hyeonwoo Kim, ..., Suneil K. Koliwad, Bruce M. Spiegelman, Shingo Kajimura Correspondence [email protected] In Brief A subset of adipocyte progenitor cells give rise to beige fat through signaling responses to irisin through the action of specific integrins and the co- receptor CD81. Highlights d Beige fat progenitors are marked by cell surface proteins, PDGFRa, Sca1, and CD81 d Beige APC proliferation is regulated by temperature, genetic background, and aging d CD81 mediates integrin-FAK signaling in response to irisin d CD81 loss causes obesity, insulin resistance, and adipose tissue inflammation Oguri et al., 2020, Cell 182, 1–15 August 6, 2020 ª 2020 Elsevier Inc. https://doi.org/10.1016/j.cell.2020.06.021 ll Please cite this article in press as: Oguri et al., CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling, Cell (2020), https://doi.org/10.1016/j.cell.2020.06.021 ll Article CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling Yasuo Oguri,1,2,3,4,13 Kosaku Shinoda,1,2,3,5,13 Hyeonwoo Kim,6,13 Diana L.
    [Show full text]
  • Migration of Germline Progenitor Cells Is Directed by Sphingosine-1-Phosphate Signalling in a Basal Chordate
    ARTICLE Received 14 Jan 2015 | Accepted 4 Sep 2015 | Published 12 Oct 2015 DOI: 10.1038/ncomms9565 OPEN Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate Susannah H. Kassmer1,2, Delany Rodriguez1, Adam D. Langenbacher2, Connor Bui2 & Anthony W. De Tomaso2 The colonial ascidian Botryllus schlosseri continuously regenerates entire bodies in an asexual budding process. The germ line of the newly developing bodies is derived from migrating germ cell precursors, but the signals governing this homing process are unknown. Here we show that germ cell precursors can be prospectively isolated based on expression of aldehyde dehydrogenase and integrin alpha-6, and that these cells express germ cell markers such as vasa, pumilio and piwi, as well as sphingosine-1-phosphate receptor. In vitro, sphingosine-1- phosphate (S1P) stimulates migration of germ cells, which depends on integrin alpha-6 activity. In vivo, S1P signalling is essential for homing of germ cells to newly developing bodies. S1P is generated by sphingosine kinase in the developing germ cell niche and degraded by lipid phosphate phosphatase in somatic tissues. These results demonstrate a previously unknown role of the S1P signalling pathway in germ cell migration in the ascidian Botryllus schlosseri. 1 Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA. 2 Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA. Correspondence and requests for materials should be addressed to S.H.K. (email: [email protected]). NATURE COMMUNICATIONS | 6:8565 | DOI: 10.1038/ncomms9565 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited.
    [Show full text]