Multi-Tiered Screening and Diagnosis Strategy for COVID-19: a Model for Sustainable Testing Capacity in Response to Pandemic

Total Page:16

File Type:pdf, Size:1020Kb

Multi-Tiered Screening and Diagnosis Strategy for COVID-19: a Model for Sustainable Testing Capacity in Response to Pandemic ANNALS OF MEDICINE 2020, VOL. 52, NO. 5, 207–214 https://doi.org/10.1080/07853890.2020.1763449 ORIGINAL ARTICLE Multi-tiered screening and diagnosis strategy for COVID-19: a model for sustainable testing capacity in response to pandemic Michael S. Puliaa, Terrence P. O’Brienb, Peter C. Houc, Andrew Schumand and Robert Samburskye aBerbeeWalsh Department of Emergency Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; bCharlotte Breyer Rodgers Distinguished Chair Ocular Microbiology Laboratory, Infection Control Unit, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, U.S.A; cDivision of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; dDepartment of Pediatrics, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; eLumos Diagnostics, Inc., Sarasota, FL, USA ABSTRACT ARTICLE HISTORY Coronavirus disease 2019 (COVID-19), caused by novel enveloped single stranded RNA corona- Received 8 April 2020 virus (SARS-CoV-2), is responsible for an ongoing global pandemic. While other countries Revised 27 April 2020 deployed widespread testing as an early mitigation strategy, the U.S. experienced delays in Accepted 28 April 2020 development and deployment of organism identification assays. As such, there is uncertainty KEYWORDS surrounding disease burden and community spread, severely hampering containment efforts. COVID-19; Coronavirus; COVID-19 illuminates the need for a tiered diagnostic approach to rapidly identify clinically sig- SARS-CoV-2; myxovirus nificant infections and reduce disease spread. Without the ability to efficiently screen patients, resistance protein A (MxA); hospitals are overwhelmed, potentially delaying treatment for other emergencies. A multi-tiered, C-reactive protein (CRP); diagnostic strategy incorporating a rapid host immune response assay as a screening test, molecular diagnostics; molecular confirmatory testing and rapid IgM/IgG testing to assess benefit from quarantine/fur- serology; rapid diagnostic ther testing and provide information on population exposure/herd immunity would efficiently tests; point-of-care test evaluate potential COVID-19 patients. Triaging patients within minutes with a fingerstick rather than hours/days after an invasive swab is critical to pandemic response as reliance on the exist- ing strategy is limited by assay accuracy, time to results, and testing capacity. Early screening and triage is achievable from the outset of a pandemic with point-of-care host immune response testing which will improve response time to clinical and public health actions. KEY MESSAGES Delayed testing deployment has led to uncertainty surrounding overall disease burden and community spread, severely hampering public health containment and healthcare system preparation efforts. A multi-tiered testing strategy incorporating rapid, host immune point-of-care tests can be used now and for future pandemic planning by effectively identifying patients at risk of dis- ease thereby facilitating quarantine earlier in the progression of the outbreak during the weeks and months it can take for pathogen specific confirmatory tests to be developed, vali- dated and manufactured in sufficient quantities. The ability to triage patients at the point of care and support the guidance of medical and therapeutic decisions, for viral isolation or confirmatory testing or for appropriate treatment of COVID-19 and/or bacterial infections, is a critical component to our national pandemic response and there is an urgent need to implement the proposed strategy to combat the current outbreak. Background visits annually in the United States [2]. Community- Acute respiratory infection (ARI) is responsible for acquired bacterial pneumonia (CABP), which is com- more than 100 million adult ambulatory care visits [1] monly associated with ARI, is the second most com- and 29 million paediatric emergency department (ED) mon cause of hospitalization and the most common CONTACT Michael S. Pulia [email protected] Emergency Care for Infectious Diseases (ECID) Research Program, BerbeeWalsh Department of Emergency Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA This article has been republished with minor changes. These changes do not impact the academic content of the article. ß 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by- nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. 208 M. S. PULIA ET AL. infectious cause of death in the United States [3]. uncomfortable for the patient when administered cor- Viruses cause over 85% of ARIs [1] with seasonal influ- rectly, and specialized training is suggested for those enza typically affecting 3–8% of the U.S. population administering the test. After swabbing, the provider each year [4]. Common bacterial infections such as mixes the specimen with liquid in an open container group A streptococcus pharyngitis and CABP comprise which could release a highly contagious pathogen, the remaining minority of ARI [1]. Coronavirus disease spread by droplets, into the air. NP swabs may also be 2019 (COVID-19), caused by novel enveloped single- considered an aerosol generating procedure (AGP), stranded RNA coronavirus (SARS-CoV-2), has a similar which may induce a cough and repeatedly expose nucleotide identity to other novel coronavirus out- healthcare workers to droplets transmission. Thus, breaks causing ARI in humans, 2003 SARS-CoV and healthcare workers who perform this testing may 2012 MERS-CoV [5–7]. SARS-CoV-2 is responsible for a need additional protective equipment, which remains global pandemic that began in the winter of 2019. in short supply, to safely perform this testing. Although overall COVID-19 mortality rates are low Inadequate sample collection may also contribute to relative to other recent viral epidemics (e.g. SARS, the reduced sensitivity of molecular tests [17,18]. Ebola) [8,9], older adults and those with chronic dis- Increasingly, false negative molecular test results ease are at substantially increased risk of morbidity are of concern to clinicians on the frontlines who see and mortality and increasingly, younger adults (<50) patients with clear clinical presentations of COVID-19 are requiring critical care hospital resources [10]. The (e.g. cough, fever, characteristic chest imaging) and sudden spike in patients requiring ventilator support test negative for SARS-CoV-2 on day one but test posi- overwhelmed local healthcare systems in several areas tive days later [17,18]. Recently released data from the of the world including Wuhan, China and most Cleveland Clinic showed a false negative rate of 14.8% recently northern Italy and New York City [11,12]. Per of the 239 specimens tested with a rapid PCR test Institute of Healthcare Metrics and Evaluation, the [19]. The risk for false negative results requires repeat peak of daily COVID-19 deaths was 2,688 on April 15, molecular testing, potentially adding days to a con- 2020 and over 55,000 people have died in the U.S. as firmatory diagnosis. Additionally, as PCR is theoretically of April 27, 2020 [13,14]. capable of detecting small amounts of pathogen, it is While other countries deployed widespread testing yet to be elucidated what a positive result means in early during the SARS-CoV-2 pandemic (e.g. South terms of infectivity, colonization, and active infection, Korea, Germany), the U.S. has experienced significant especially among those who are asymptomatic. delays in the development and deployment of organ- The requirement of ancillary equipment and com- ism identification assays. As such, there is uncertainty plex technical operation by trained professionals in surrounding overall disease burden and community certified labs subjects molecular RT-PCR tests to limita- spread, severely hampering public health containment tions. These include the procurement of expensive and healthcare system preparation efforts. COVID-19 materials and equipment. In addition, these assays illuminates the need for a tiered and coordinated take 1 to 3 h to perform and total turnaround time diagnostic approach to rapidly identify clinically sig- can take upwards of 24 hours if the local lab does not nificant infections and reduce the spread of disease. have molecular testing capabilities in-house. Without the ability to efficiently screen patients, Considering that specimens often need to be trans- healthcare facilities will become overwhelmed, poten- ported to a testing facility, there can be a delay in tially delaying treatment for other emergency condi- establishing a diagnosis. tions (e.g. bacterial sepsis). Finally, concerns about testing capacity, including Molecular pathogen detection using real-time poly- reagent shortages, have resulted in the Centres for merase chain reaction (PCR) has been established as Disease Control and Prevention issuing guidelines rec- the gold standard for confirmatory diagnosis of SARS- ommending testing be restricted to only select popu- CoV-2 infections. This technology is designed to be a lation (e.g. high risk) [20]. This limits front line
Recommended publications
  • Case 16-2019: a 53-Year-Old Man with Cough and Eosinophilia
    The new england journal of medicine Case Records of the Massachusetts General Hospital Founded by Richard C. Cabot Eric S. Rosenberg, M.D., Editor Virginia M. Pierce, M.D., David M. Dudzinski, M.D., Meridale V. Baggett, M.D., Dennis C. Sgroi, M.D., Jo-Anne O. Shepard, M.D., Associate Editors Alyssa Y. Castillo, M.D., Case Records Editorial Fellow Emily K. McDonald, Sally H. Ebeling, Production Editors Case 16-2019: A 53-Year-Old Man with Cough and Eosinophilia Rachel P. Simmons, M.D., David M. Dudzinski, M.D., Jo-Anne O. Shepard, M.D., Rocio M. Hurtado, M.D., and K.C. Coffey, M.D.​​ Presentation of Case From the Department of Medicine, Bos- Dr. David M. Dudzinski: A 53-year-old man was evaluated in an urgent care clinic of ton Medical Center (R.P.S.), the Depart- this hospital for 3 months of cough. ment of Medicine, Boston University School of Medicine (R.P.S.), the Depart- Five years before the current evaluation, the patient began to have exertional ments of Medicine (D.M.D., R.M.H.), dyspnea and received a diagnosis of hypertrophic obstructive cardiomyopathy, with Radiology (J.-A.O.S.), and Pathology a resting left ventricular outflow gradient of 110 mm Hg on echocardiography. (K.C.C.), Massachusetts General Hos- pital, and the Departments of Medicine Although he received medical therapy, symptoms persisted, and percutaneous (D.M.D., R.M.H.), Radiology (J.-A.O.S.), alcohol septal ablation was performed 1 year before the current evaluation, with and Pathology (K.C.C.), Harvard Medical resolution of the exertional dyspnea.
    [Show full text]
  • Care Process Models Streptococcal Pharyngitis
    Care Process Model MONTH MARCH 20152019 DEVELOPMENTDIAGNOSIS AND AND MANAGEMENT DESIGN OF OF CareStreptococcal Process Models Pharyngitis 20192015 Update This care process model (CPM) was developed by Intermountain Healthcare’s Antibiotic Stewardship team, Medical Speciality Clinical Program,Community-Based Care, and Intermountain Pediatrics. Based on expert opinion and the Infectious Disease Society of America (IDSA) Clinical Practice Guidelines, it provides best-practice recommendations for diagnosis and management of group A streptococcal pharyngitis (strep) including the appropriate use of antibiotics. WHAT’S INSIDE? KEY POINTS ALGORITHM 1: DIAGNOSIS AND TREATMENT OF PEDIATRIC • Accurate diagnosis and appropriate treatment can prevent serious STREPTOCOCCAL PHARYNGITIS complications . When strep is present, appropriate antibiotics can prevent AGES 3 – 18 . 2 SHU acute rheumatic fever, peritonsillar abscess, and other invasive infections. ALGORITHM 2: DIAGNOSIS Treatment also decreases spread of infection and improves clinical AND TREATMENT OF ADULT symptoms and signs for the patient. STREPTOCOCCAL PHARYNGITIS . 4 • Differentiating between a patient with an active strep infection PHARYNGEAL CARRIERS . 6 and a patient who is a strep carrier with an active viral pharyngitis RESOURCES AND REFERENCES . 7 is challenging . Treating patients for active strep infection when they are only carriers can result in overuse of antibiotics. Approximately 20% of asymptomatic school-aged children may be strep carriers, and a throat culture during a viral illness may yield positive results, but not require antibiotic treatment. SHU Prescribing repeat antibiotics will not help these patients and can MEASUREMENT & GOALS contribute to antibiotic resistance. • Ensure appropriate use of throat • For adult patients, routine overnight cultures after a negative rapid culture for adult patients who meet high risk criteria strep test are unnecessary in usual circumstances because the risk for acute rheumatic fever is exceptionally low.
    [Show full text]
  • Diagnosis and Treatment of Acute Pharyngitis/Tonsillitis: a Preliminary Observational Study in General Medicine
    Eur opean Rev iew for Med ical and Pharmacol ogical Sci ences 2016; 20: 4950-4954 Diagnosis and treatment of acute pharyngitis/tonsillitis: a preliminary observational study in General Medicine F. DI MUZIO, M. BARUCCO, F. GUERRIERO Azienda Sanitaria Locale Roma 4, Rome, Italy Abstract. – OBJECTIVE : According to re - pharmaceutical expenditure, without neglecting cent observations, the insufficiently targeted the more important and correct application of use of antibiotics is creating increasingly resis - the Guidelines with performing of a clinically val - tant bacterial strains. In this context, it seems idated test that carries advantages for reducing increasingly clear the need to resort to extreme the use of unnecessary and potentially harmful and prudent rationalization of antibiotic thera - antibiotics and the consequent lower prevalence py, especially by the physicians working in pri - and incidence of antibiotic-resistant bacterial mary care units. In clinical practice, actually the strains. general practitioner often treats multiple dis - eases without having the proper equipment. In Key Words: particular, the use of a dedicated, easy to use Acute pharyngitis, Tonsillitis, Strep throat, Beta-he - diagnostic test would be one more weapon for molytic streptococcus Group A (GABHS), Rapid anti - the correct diagnosis and treatment of acute gen detection test, Appropriateness use of antibiotics, pharyngo-tonsillitis. The disease is a condition Cost savings in pharmaceutical spending. frequently encountered in clinical practice but
    [Show full text]
  • Common Questions About Streptococcal Pharyngitis MONICA G
    Common Questions About Streptococcal Pharyngitis MONICA G. KALRA, DO, Memorial Family Medicine Residency, Sugar Land, Texas KIM E. HIGGINS, DO, Envoy Hospice and Brookdale Hospice, Fort Worth, Texas EVAN D. PEREZ, MD, Memorial Family Medicine Residency, Sugar Land, Texas Group A beta-hemolytic streptococcal (GABHS) infection causes 15% to 30% of sore throats in children and 5% to 15% in adults, and is more common in the late winter and early spring. The strongest independent predictors of GABHS pharyngitis are patient age of five to 15 years, absence of cough, tender anterior cervical adenopa- thy, tonsillar exudates, and fever. To diagnose GABHS pharyngitis, a rapid antigen detection test should be ordered in patients with a modified Centor or FeverPAIN score of 2 or 3. First-line treatment for GABHS pharyngitis includes a 10-day course of penicillin or amoxicillin. Patients allergic to penicillin can be treated with first- generation cephalosporins, clindamycin, or macrolide antibiotics. Nonsteroidal anti-inflammatory drugs are more effective than acet- aminophen and placebo for treatment of fever and pain associated with GABHS pharyngitis; medicated throat lozenges used every two hours are also effective. Corticosteroids provide only a small reduc- tion in the duration of symptoms and should not be used routinely. (Am Fam Physician. 2016;94(1):24-31. Copyright © 2016 American Academy of Family Physicians.) ILLUSTRATION JOHN BY KARAPELOU CME This clinical content haryngitis is diagnosed in 11 mil- EVIDENCE SUMMARY conforms to AAFP criteria lion persons in the outpatient set- Several risk factors should increase the index for continuing medical 1 education (CME). See ting each year in the United States.
    [Show full text]
  • Pediatric Ambulatory Community Acquired Pneumonia (CAP)
    ANMC Pediatric (≥3mo) Ambulatory Community Acquired Pneumonia (CAP) Treatment Guideline Criteria for Respiratory Distress Criteria For Outpatient Management Testing/Imaging for Outpatient Management Tachypnea, in breaths/min: Mild CAP: no signs of respiratory distress Vital Signs: Standard VS and Pulse Oximetry Age 0-2mo: >60 Able to tolerate PO Labs: No routine labs indicated Age 2-12mo: >50 No concerns for pathogen with increased virulence Influenza PCR during influenza season Age 1-5yo: >40 (ex. CA-MRSA) Blood cultures if not fully immunized OR fails to Age >5yo: >20 Family able to carefully observe child at home, comply improve/worsens after initiation of antibiotics Dyspnea with therapy plan, and attend follow up appointments Urinary antigen detection testing is not Retractions recommended in children; false-positive tests are common. Grunting If patient does not meet outpatient management criteria Radiography: No routine CXR indicated Nasal flaring refer to inpatient pneumonia guideline for initial workup Apnea and testing. AP and lateral CXR if fails initial antibiotic therapy Altered mental status AP and lateral CXR 4-6 weeks after diagnosis if Pulse oximetry <90% on room air recurrent pneumonia involving the same lobe Treatment Selection Suspected Viral Pneumonia Most Common Pathogens: Influenza A & B, Adenovirus, Respiratory Syncytial Virus, Parainfluenza No antimicrobial therapy is necessary. Most common in <5yo If influenza positive, see influenza guidelines for treatment algorithm. Suspected Bacterial
    [Show full text]
  • Nebulised N-Acetylcysteine for Unresponsive Bronchial Obstruction in Allergic Brochopulmonary Aspergillosis: a Case Series and Review of the Literature
    Journal of Fungi Review Nebulised N-Acetylcysteine for Unresponsive Bronchial Obstruction in Allergic Brochopulmonary Aspergillosis: A Case Series and Review of the Literature Akaninyene Otu 1,2,*, Philip Langridge 2 and David W. Denning 2,3 1 Department of Internal Medicine, College of Medical Sciences, University of Calabar, Calabar, Cross River State P.M.B. 1115, Nigeria 2 The National Aspergillosis Centre, 2nd Floor Education and Research Centre, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT, UK; [email protected] (P.L.); [email protected] (D.W.D.) 3 Faculty of Biology, Medicine and Health, The University of Manchester, and Manchester Academic Health Science Centre, Oxford Rd, Manchester M13 9PL, UK * Correspondence: [email protected] Received: 5 September 2018; Accepted: 8 October 2018; Published: 15 October 2018 Abstract: Many chronic lung diseases are characterized by the hypersecretion of mucus. In these conditions, the administration of mucoactive agents is often indicated as adjuvant therapy. N-acetylcysteine (NAC) is a typical example of a mucolytic agent. A retrospective review of patients with pulmonary aspergillosis treated at the National Aspergillosis Centre in Manchester, United Kingdom, with NAC between November 2015 and November 2017 was carried out. Six Caucasians with Aspergillus lung disease received NAC to facilitate clearance of their viscid bronchial mucus secretions. One patient developed immediate bronchospasm on the first dose and could not be treated. Of the remainder, two (33%) derived benefit, with increased expectoration and reduced symptoms. Continued response was sustained over 6–7 months, without any apparent toxicity. In addition, a systematic review of the literature is provided to analyze the utility of NAC in the management of respiratory conditions which have unresponsive bronchial obstruction as a feature.
    [Show full text]
  • Rise in Children Presenting with Periodic Fever, Aphthous Stomatitis, Pharyngitis and Adenitis Syndrome During the COVID-19 Pandemic
    Letter Arch Dis Child: first published as 10.1136/archdischild-2021-322792 on 22 July 2021. Downloaded from Rise in children presenting with periodic fever, aphthous stomatitis, pharyngitis and adenitis syndrome during the COVID-19 pandemic Periodic fever, aphthous stomatitis, phar- yngitis and adenitis (PFAPA) syndrome is characterised by episodes of fever lasting a few days that classically exhibit clockwork periodicity. Since the initial description of PFAPA syndrome by Gary Marshall in 1987, it has been recognised that stomatitis, pharyngitis and adenitis Figure 1 Rise in children presenting with PFAPA syndrome during the COVID-19 pandemic. are variably present.1 Its phenotype is Children with a new diagnosis of PFAPA syndrome as absolute number (black circles) and consistent with an autoinflammatory as proportion of overall referrals (grey circles) to the tertiary paediatric immunology and condition of unknown genetic aetiology rheumatology outpatient clinics at Bristol Royal Hospital for Children (2015–2020). possibly involving an infectious/environ- mental trigger, given that a family history is present in approximately 27% of cases.2 their characteristics were similar to chil- condition was already increasing. Third, The natural history is onset before 6 years dren diagnosed in the pre-pandemic era many of our cohort underwent multiple old, followed by spontaneous resolution (figure 1 and table 1). In comparison, SARS- CoV-2 tests, and the disruption by 15 years. Treatment with colchicine there was a modest overall increase in associated with repeated periods of house- can reduce the frequency of episodes and referrals to the service (incidence rate hold self- isolation may have contributed tonsillectomy is usually curative.3 ratio 1.71; 95% CI 1.46 to 2.00).
    [Show full text]
  • Approaching Otolaryngology Patients During the COVID-19 Pandemic
    Complete ManuscriptClick here to access/download;Complete Manuscript;Otolaryngology Diseases in COVID-19 Patients-V17-final.docx This manuscript has been accepted for publication in Otolaryngology-Head and Neck Surgery. Approaching Otolaryngology Patients during the COVID-19 Pandemic Chong Cui1,2#, Qi Yao3#, Di Zhang4#, Yu Zhao1,2#, Kun Zhang1,2, Eric Nisenbaum5, Pengyu Cao1,2,6, Keqing Zhao1,2,6, Xiaolong Huang3, Dewen Leng3, Chunhan Liu4, Ning Li7, Yan Luo8, Bing Chen1,2, Roy Casiano5, Donald Weed5, Zoukaa Sargi5, Fred Telischi5, Hongzhou Lu6, James C. Denneny III9, Yilai Shu1,2 Xuezhong Liu 5 1. ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences Fudan University, Shanghai, 200031, China. 2. NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China. 3. Department of Otorhinolaryngology, Chinese and Western Medicine Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. 4. Department of Otolaryngology, The Third People’s Hospital of Shenzhen, 29 Bulan Road, Longgang District, Shenzhen, 518112, China. 5. Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. 6. Department of Infectious Diseases, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai 201508, China 7. Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, 200040, China. This manuscript has been accepted for publication in Otolaryngology-Head and Neck Surgery. 8. Department of Hospital-Acquired Infection Control, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China. 9. American Academy of Otolaryngology – Head and Neck Surgery, Alexandria, VA 22314, USA # contributed equally Corresponding Authors: Dr.
    [Show full text]
  • Invasive Pseudomembranous Upper Airway and Tracheal Aspergillosis
    Khan et al. BMC Infectious Diseases (2020) 20:13 https://doi.org/10.1186/s12879-019-4744-2 CASE REPORT Open Access Invasive pseudomembranous upper airway and tracheal Aspergillosis refractory to systemic antifungal therapy and serial surgical debridement in an Immunocompetent patient Shihan N. Khan1, Rashmi Manur2, John S. Brooks2, Michael A. Husson2, Kevin Leahy3 and Matthew Grant1* Abstract Background: The development of respiratory infections secondary to Aspergillus spp. spores found ubiquitously in the ambient environment is uncommon in immunocompetent patients. Previous reports of invasive upper airway aspergillosis in immunocompetent patients have generally demonstrated the efficacy of treatment regimens utilizing antifungal agents in combination with periodic endoscopic debridement, with symptoms typically resolving within months of initiating therapy. Case presentation: A 43-year-old previously healthy female presented with worsening respiratory symptoms after failing to respond to long-term antibiotic treatment of bacterial sinusitis. Biopsy of her nasopharynx and trachea revealed extensive fungal infiltration and Aspergillus fumigatus was isolated on tissue culture. Several months of oral voriconazole monotherapy failed to resolve her symptoms and she underwent mechanical debridement for symptom control. Following transient improvement, her symptoms subsequently returned and failed to fully resolve in spite of increased voriconazole dosing and multiple additional tissue debridements over the course of many years. Conclusions: Invasive upper airway aspergillosis is exceedingly uncommon in immunocompetent patients. In the rare instances that such infections do occur, combinatorial voriconazole and endoscopic debridement is typically an efficacious treatment approach. However, some patients may continue to experience refractory symptoms. In such cases, continued aggressive treatment may potentially slow disease progression even if complete disease resolution cannot be achieved.
    [Show full text]
  • Streptococcal Pharyngitis (Strep Throat)
    Streptococcal Pharyngitis (Strep Throat) Maria Pitaro, MD ore throat is a very common reason for a visit to a health care provider. While the major treatable pathogen is group A beta hemolytic Streptococcus (GAS), Sthis organism is responsible for only 15-30% of sore throat cases in children and 5-10% of cases in adults. Other pathogens that cause sore throat are viruses (about 50%), other bacteria (including Group C beta hemolytic Streptococci and Neisseria gonorrhea), Chlamydia, and Mycoplasma. In this era of increasing microbiologic resistance to antibiotics, the public health goal of all clinicians should be to avoid the inappropriate use of antibiotics and to target treatment to patients most likely to have infection due to GAS. Clinical Manifestations and chest and in the folds of the skin and usually Pharyngitis due to GAS varies in severity. The spares the face, palms, and soles. Flushing of the Streptococcal Pharyngitis most common presentation is an acute illness with cheeks and pallor around the mouth is common, (Strep Throat). sore throat, fever (often >101°F/38.3°C), tonsillar and the tongue becomes swollen, red, and mottled Inflammation of the exudates (pus on the tonsils), and tender cervical (“strawberry tongue”). Both skin and tongue may oropharynx with adenopathy (swollen glands). Patients may also have peel during recovery. petechiae, or small headache, malaise, and anorexia. Additional physical Pharyngitis due to GAS is usually a self-limited red spots, on the soft palate. examination findings may include petechiae of the condition with symptoms resolving in 2-5 days even Photo courtesy soft palate and a red, swollen uvula.
    [Show full text]
  • Pulmonary Aspergillosis, the Quiet and Severe Complication of Immunosuppressive Therapy in Pemphigus Vulgaris
    CLINICAL ASPECTS PULMONARY ASPERGILLOSIS, THE QUIET AND SEVERE COMPLICATION OF IMMUNOSUPPRESSIVE THERAPY IN PEMPHIGUS VULGARIS MARIA ROTARU1, FLORINA POPA2, MIOARA MUNTEANU3, MIHAELA STANCIU4 1,2,4“Lucian Blaga” University of Sibiu, 3Respiratory Hospital of Sibiu Keywords: pemphigus Abstract: Of the autoimmune bullous diseases, pemphigus vulgaris is the most severe, requiring long- vulgaris, pulmonary term immunosuppressive therapy and high doses. Although the disease can be controlled with therapy, aspergillosis, severe complications can occur secondary to the immunosuppressive therapy. Pulmonary aspergillosis complication, is a severe form of lung injury caused by Aspergillus spores that can appear on immunosuppressive immunosupresiv status with life-threatening risk if not diagnosed and treated in time. We present a case of a patient with therapy pemphigus vulgaris found in immunosuppressive therapy with systemic corticosteroids and azathioprine, who was diagnosed and treated for a severe form of pulmonary aspergillosis, occurred 4 months after the treatment of the underlying disease. Cuvinte cheie: Rezumat: Dintre bolile buloase autoimune, pemfigusul vulgar este forma cea mai severă, necesitând pemfigus vulgar, tratament imunosupresiv de lungă durată şi în doze mari. Chiar dacă boala poate fi controlată aspergiloză pulmonară, terapeutic, pot apărea complicaţii severe secundare tratamentului imunosupresiv. Aspergiloza complicaţii, tratament pulmonară este o formă severă de afectare pulmonară produsă de sporii de Aspergillus ce poate apărea imunosupresiv pe fond imunosupresiv, cu risc vital dacă nu este diagnosticată şi tratată în timp util. Se prezintă cazul unui pacient cu pemfigus vulgar aflat în tratament imunosupresiv cu corticoterapie sistemică şi azatioprină care a fost diagnosticat şi tratat pentru o formă severă de aspergiloză pulmonară, apărută la 4 luni de la instituirea tratamentului bolii de bază.
    [Show full text]
  • Secondary Bacterial Organizing Pneumonia in a Patient Recovered from COVID-19 Disease: a Case Report
    Case Reports in Clinical Medicine, 2021, 10, 46-51 https://www.scirp.org/journal/crcm ISSN Online: 2325-7083 ISSN Print: 2325-7075 Secondary Bacterial Organizing Pneumonia in a Patient Recovered from COVID-19 Disease: A Case Report Alaa Al Zaki, Reem Al Argan, Abir Al Said, Fears Al Kuwaiti Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, King Fahd Hospital of the University, Dammam, KSA How to cite this paper: Al Zaki, A., Al Abstract Argan, R., Al Said, A. and Al Kuwaiti, F. (2021) Secondary Bacterial Organizing COVID-19 disease is a global pandemic caused by Severe Acute Respiratory Pneumonia in a Patient Recovered from Syndrome Coronavirus 2 (SARS-CoV2) that mainly presents with pneumo- COVID-19 Disease: A Case Report. Case nia, but has variable multi-systemic manifestations. Concomitant bacterial Reports in Clinical Medicine, 10, 46-51. https://doi.org/10.4236/crcm.2021.102007 infections associated with the acute stage of COVID-19 disease have been rarely reported in the literature. However, to our knowledge, post viral orga- Received: January 20, 2021 nizing pneumonia (OP) secondary to bacterial infection after recovery from Accepted: February 22, 2021 SARS-CoV2 infection has not been noted before. We report a 27-year-old Published: February 25, 2021 male patient with Type 1 Diabetes Mellitus who presented with fever post re- Copyright © 2021 by author(s) and covery from COVID-19 disease for seven weeks and was found to have OP Scientific Research Publishing Inc. secondary to Klebsiella pneumoniae. Furthermore, the bronchoalveolar la- This work is licensed under the Creative vage was positive for SARS-CoV2 by RT-PCR despite multiple negative na- Commons Attribution International sopharyngeal RT-PCR.
    [Show full text]