Wait-Freedom is Harder than Lock-Freedom under Strong Linearizability Oksana Denysyuk, Philipp Woelfel To cite this version: Oksana Denysyuk, Philipp Woelfel. Wait-Freedom is Harder than Lock-Freedom under Strong Lin- earizability. DISC 2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. 10.1007/978- 3-662-48653-5_5. hal-01199821 HAL Id: hal-01199821 https://hal.archives-ouvertes.fr/hal-01199821 Submitted on 16 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Wait-Freedom is Harder than Lock-Freedom under Strong Linearizability Oksana Denysyuk and Philipp Woelfel Department of Computer Science, University of Calgary, Canada foksana.denysyuk,
[email protected] Abstract. In randomized algorithms, replacing atomic shared objects with linearizable [1] implementations may affect probability distributions over outcomes [2]. To avoid this problem in the adaptive adversary model, it is necessary and sufficient that implemented objects satisfy strong lin- earizability [2]. In this paper we study the existence of strongly lineariz- able implementations from multi-writer registers. We prove the impossi- bility of wait-free strongly linearizable implementations for a number of standard objects, including snapshots, counters, and max-registers, all of which have wait-free linearizable implementations.