Irrational Philosophy? Kronecker's Constructive Philosophy and Finding the Real Roots of a Polynomial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Algebraic Generality Vs Arithmetic Generality in the Controversy Between C
Algebraic generality vs arithmetic generality in the controversy between C. Jordan and L. Kronecker (1874). Frédéric Brechenmacher (1). Introduction. Throughout the whole year of 1874, Camille Jordan and Leopold Kronecker were quarrelling over two theorems. On the one hand, Jordan had stated in his 1870 Traité des substitutions et des équations algébriques a canonical form theorem for substitutions of linear groups; on the other hand, Karl Weierstrass had introduced in 1868 the elementary divisors of non singular pairs of bilinear forms (P,Q) in stating a complete set of polynomial invariants computed from the determinant |P+sQ| as a key theorem of the theory of bilinear and quadratic forms. Although they would be considered equivalent as regard to modern mathematics (2), not only had these two theorems been stated independently and for different purposes, they had also been lying within the distinct frameworks of two theories until some connections came to light in 1872-1873, breeding the 1874 quarrel and hence revealing an opposition over two practices relating to distinctive cultural features. As we will be focusing in this paper on how the 1874 controversy about Jordan’s algebraic practice of canonical reduction and Kronecker’s arithmetic practice of invariant computation sheds some light on two conflicting perspectives on polynomial generality we shall appeal to former publications which have already been dealing with some of the cultural issues highlighted by this controversy such as tacit knowledge, local ways of thinking, internal philosophies and disciplinary ideals peculiar to individuals or communities [Brechenmacher 200?a] as well as the different perceptions expressed by the two opponents of a long term history involving authors such as Joseph-Louis Lagrange, Augustin Cauchy and Charles Hermite [Brechenmacher 200?b]. -
The Science of Infinity
Volume 22, Number 2, April/May 2016 The Science of Infinity Raphael A. Fraser, PhD, Division of Biostatistics, MCW \The infinite! No other question has ever moved so profoundly the spirit of man," said David Hilbert (1862-1943), one of the most influential mathematicians of the 19th century. The subject has been studied extensively by mathematicians and philosophers but still remains an enigma of the intellectual world. The notions of “finite” and “infinite” are primitive, and it is very likely that the reader has never examined these notions very carefully. For example, there are as many even numbers as there are natural numbers. This is true but counter intuitive. We may argue, that the set of even numbers is half the size of the set of natural numbers, thus how can both sets be of the same size? To answer this question we must first explain what do we mean when we say two sets are the same size? Normally, we would count the elements in each set then verify the counts are the same. However, there is another way to verify two sets are the same size by matching. To illustrate, that matching is more fundamental than counting let us consider an example. If I walked into a large room with many chairs but all the seats are occupied and no one is standing then I can conclude that there are as many people as there are chairs. That is, there is a one-to-one correspondence between person and chair. Hence both sets are the same size, even though we did not count how many persons or chairs they were. -
Georg Cantor English Version
GEORG CANTOR (March 3, 1845 – January 6, 1918) by HEINZ KLAUS STRICK, Germany There is hardly another mathematician whose reputation among his contemporary colleagues reflected such a wide disparity of opinion: for some, GEORG FERDINAND LUDWIG PHILIPP CANTOR was a corruptor of youth (KRONECKER), while for others, he was an exceptionally gifted mathematical researcher (DAVID HILBERT 1925: Let no one be allowed to drive us from the paradise that CANTOR created for us.) GEORG CANTOR’s father was a successful merchant and stockbroker in St. Petersburg, where he lived with his family, which included six children, in the large German colony until he was forced by ill health to move to the milder climate of Germany. In Russia, GEORG was instructed by private tutors. He then attended secondary schools in Wiesbaden and Darmstadt. After he had completed his schooling with excellent grades, particularly in mathematics, his father acceded to his son’s request to pursue mathematical studies in Zurich. GEORG CANTOR could equally well have chosen a career as a violinist, in which case he would have continued the tradition of his two grandmothers, both of whom were active as respected professional musicians in St. Petersburg. When in 1863 his father died, CANTOR transferred to Berlin, where he attended lectures by KARL WEIERSTRASS, ERNST EDUARD KUMMER, and LEOPOLD KRONECKER. On completing his doctorate in 1867 with a dissertation on a topic in number theory, CANTOR did not obtain a permanent academic position. He taught for a while at a girls’ school and at an institution for training teachers, all the while working on his habilitation thesis, which led to a teaching position at the university in Halle. -
Zeta-Functions Associated with Quadratic Forms in Adolf Hurwitz's Estate
MATHEMATICAL PERSPECTIVES BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 3, July 2016, Pages 477–481 http://dx.doi.org/10.1090/bull/1534 Article electronically published on March 16, 2016 ABOUT THE COVER: ZETA-FUNCTIONS ASSOCIATED WITH QUADRATIC FORMS IN ADOLF HURWITZ’S ESTATE NICOLA M. R. OSWALD AND JORN¨ STEUDING The first published proof of key analytic properties of zeta-functions associ- ated with quadratic forms is due to Paul Epstein [2] in 1903 (submitted Janu- ary 1902). The corresponding name “Epstein zeta-functions” was introduced by Edward Charles Titchmarsh in his article [15] from 1934; soon after, this terminol- ogy became common through influential articles of Max Deuring and Carl Ludwig Siegel. While examining Adolf Hurwitz’s mathematical estate at ETH Zurich, how- ever, the authors discovered that Hurwitz could have published these results already during his time in K¨onigsberg (now Kaliningrad) in the late 1880s. Unpublished notes of Hurwitz testify that he was not only aware of the analytic properties of zeta-functions associated with quadratic forms but prepared a fair copy of his notes, probably for submission to a journal. The cover of this issue shows the first page (see Figure 1). p Given a quadratic form ϕ(x1,x2,...,xp)= i,k=1 aikxixk and real parameters u1,u2,...,up; v1,v2,...,vp, Hurwitz considers the associated Dirichlet series 2πi(x v +x v +···+x v ) e 1 1 2 2 p p F(s | u, v, ϕ)= ps [ϕ(x1 + u1,x2 + u2,...,xp + up)] 2 as a function of a complex variable s, where the summation is taken over all in- tegers x1,x2,...,xp with possible exceptions of the combinations x1 = −u1,x2 = −u2,...,xp = −up (indicated by the dash). -
Kbonecker and His Arithmetical Theory of the Algebraic Equation
THE ALGEBRAIC EQUATION. 173 KBONECKER AND HIS ARITHMETICAL THEORY OF THE ALGEBRAIC EQUATION. LEOPOLD KRONECKER, one of the most illustrious of con temporary mathematicians, died at Berlin on the 29th of last December in his 68th year. For many years he had been one of the famous mathe maticians of Germany and at the time of his death was senior active professor of the mathematical faculty of the University of Berlin and editor in chief of the Journal für reine und angewandte Mathematik (Orelle). He was the last of the great triumvirate—Kummer, Weier- strass, Kronecker—to be lost to the university. Kummer retired nearly ten years ago because of sickness and old age, and recently Weierstrass followed him ; but younger than the other two, Kronecker was overtaken by death in the midst of the work to which his life had been devoted. Despite his years he was much too early lost to science. The genius which had enriched mathematical literature with so many profound and beautiful researches showed no signs of weak ness or weariness. Kronecker was born at Liegnitz near Breslau in 1823. While yet a boy at the Gymnasium of his native town his fine mathematical talents attracted the notice of his master, Kummer, whose distinguished career was then just beginning. Kummer's persuasions rescued him from the business career for which he was preparing and brought him to the univer sity.* He studied at Breslau, whither in the meantime Kummer had been called, Bonn, and Berlin, making his degree at Berlin in 1845 with a dissertation of great value : De unitati- bus complezis. -
Riemann Surfaces
SPECIAL TOPIC COURSE RIEMANN SURFACES VSEVOLOD SHEVCHISHIN Abstract. The course is devoted to the theory of Riemann surfaces and algebraic curves. We shall cover main results and topics such as Riemann-Hurwitz formula, elliptic curves and Weier- strass' }-function, divisors and line bundles, Jacobian variety of an algebraic curve, canonical divisor of an algebraic curve, holomorphic vector bundles, Czech- and Dolbeault-cohomology, Riemann-Roch formula. 1. Generalities This course is devoted to the theory of Riemann surfaces (RS) and algebraic curves. The foundation of the theory was made in XIX century by Bernhard Riemann, Niels Henrik Abel, Carl Gustav Jacobi, Karl Weierstrass, Adolf Hurwitz and others. Nowadays Riemann surfaces play a remarkable role in modern mathematics and appear in various parts such as algebraic geometry, number theory, topology, they also are very important in modern mathematical physics. The theory of Riemann surfaces includes and combines methods coming from three elds of mathematics: analysis, topology, and algebra (and algebraic geometry). One of the goals of the course is to show the interaction and mutual inuence of ideas and approaches. 2. Prerequisites. • Basic course in complex analysis (Theory of functions of one complex variable). • Basic facts from dierential geometry and algebraic topology. 3. Tentative syllabus (1) Riemann surfaces and holomorphic maps. Meromorphic functions. (2) Structure of holomorphic maps. Riemann-Hurwitz formula. (3) Conformal and quasiconformal maps. (4) Dierential forms on RS, Cauchy-Riemann operator, Cauchy-Green formula and solution of @¯-equation. (5) Divisors and holomorphic line bundles on RS-s. (6) Holomorphic vector bundles on RS-s and their cohomology. Serre duality. -
Beyond Complex: an Inspection of Quaternions
Beyond Complex: An Inspection of Quaternions Matthew Zaremsky April 3, 2007 Senior Exercise in Mathematics, Kenyon College Fall 2006 1 Introduction The Brougham Bridge in Dublin, Ireland was the site of one of the most well-known examples of spontaneous mathematical inspiration in history. On October 16th, 1843, Sir William Rowan Hamilton suddenly realized in a flash of inspiration the equations that gave structure to his brainchild, the noncommutative quaternions. He immediately carved the equations into the stone of the bridge so as not to forget them.1 i2 = j2 = k2 = ijk = −1. With a mere seven symbols, Hamilton completely described the twisted, noncommutative mathematical structure of the quaternions. This took the notion of the complex numbers to another level: instead of just one square root of -1, the quaternions boasted three distinct square roots of -1. An immediate and obvious consequence of this new structure was the ability to represent 4-space via quaternion basis vectors. Much like the complex numbers can represent the complex plane, using 1 and i as basis vectors, the elements 1, i, j, and k span a complex 4-space. Hamilton’s discovery was much more far-reaching than this simple geo- metric application shows. The quaternion algebra makes appearances in a large number of mathematical fields, often appearing unexpectedly. In this senior exercise, I will inspect the many manifestations of the quaternion alge- bra, and tie the various fields together via this common thread. Specifically, I will discuss the fields of representation theory, algebra, number theory, rotational geometry, and quantum physics, and see how each is connected through quaternion mathematics. -
Metacommutation of Hurwitz Primes
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 143, Number 4, April 2015, Pages 1459{1469 S 0002-9939(2014)12358-6 Article electronically published on November 12, 2014 METACOMMUTATION OF HURWITZ PRIMES HENRY COHN AND ABHINAV KUMAR (Communicated by Matthew A. Papanikolas) Abstract. Conway and Smith introduced the operation of metacommutation for pairs of primes in the ring of Hurwitz integers in the quaternions. We study the permutation induced on the primes of norm p by a prime of norm q under metacommutation, where p and q are distinct rational primes. In particular, we show that the sign of this permutation is the quadratic character of q modulo p. 1. Introduction In this paper we study the metacommutation mapping, which we will define shortly. Let H = R + Ri + Rj + Rk be the algebra of Hamilton quaternions over R, and let H be the subring of Hurwitz integers, consisting of the quaternions a + bi + cj + dk for which a; b; c; d are all in Z or all in Z + 1=2. Recall that for an element x = a + bi + cj + dk, its conjugate xσ is a − bi − cj − dk (we reserve the notationx ¯ for reduction modulo a prime). The reduced1 norm of x is N(x) = xxσ = a2 + b2 + c2 + d2, and the reduced trace of x is tr(x) = x + xσ = 2a. It is well known that H has a Euclidean division algorithm (on the left or right), and thus every one-sided ideal is principal. An element P 2 H is prime if it is irreducible; i.e., it is not a product of two nonunits in H. -
Mathematical Berlin: Science, Sights, and Stories
complicated political history of Germany in the 20th century and its effects on Berlin mathematics are duly explained. Mathematical Berlin: Today Berlin boasts three universities—the Humboldt University (founded in 1810), the Technical University Science, Sights, and (1946), and the Free University (1948)—and numerous other institutions where mathematics is being taught, studied, or Stories applied. by Iris and Martin Gro¨tschel Besides the aforementioned luminaries, the guide- book offers a minibiography of the following BERLIN: BERLIN STORY VERLAG, 2016, 160 PP., 14.95 EUR, ISBN 978-3- mathematicians related to Berlin: Niels Henrik Abel, 95723-080-5 Ludwig Bieberbach, Johann Peter Gustav Lejeune REVIEWED BY OSMO PEKONEN Dirichlet, Ferdinand Georg Frobenius, Immanuel Lazarus Fuchs, Hilda Geiringer, Wolfgang Haack, Carl Gustav Jacob Jacobi, Sofja Kovalevskaja, Leopold Kronecker, Ernst Eduard Kummer, Johann Heinrich Lambert, Richard erlin Story Verlag is a publishing house specializing von Mises, Erhard Schmidt, Issai Schur, Hermann in affordable Berlin guidebooks, which it offers for a Amandus Schwarz, and Jakob Steiner. BBlarge variety of target audiences. Delightfully, there Surprisingly, no mathematician seems to have a statue in also exists a city guide customized to meet the needs of Berlin but the following ones have a street named after mathematicians visiting the capital of Germany. Of the two them: Cantor, Crelle, Euler, Gauss, Kronecker, Lambert, authors, Martin Gro¨tschel is the president of the Berlin- Leibniz, and Newton. The commemorative plates—many Brandenburg Academy of Science, whereas his wife Iris, a of which have been placed quite recently—are too mathematician as well, is licensed as a tourist guide to lead numerous to be listed here. -
Leopold Kronecker's Werke. Volume V
660 SHORTER NOTICES [Sept., Leopold Kronecker's Werke. Volume V. Edited by K. Hensel. Leipzig, Teubner, 1930. 10+528 pp. The edition of Kronecker's works is now rapidly nearing its completion; there remains only Part 2 of Volume III yet unpublished. According to the list of Kronecker's publications compiled at the end of the present volume the total number of papers amounts to 139, a number which reveals the prodigious task of the editor. It seems the proper moment to congratulate Professor Hensel upon this achievement; he has by this edition erected a monument to the mathematical genius of Kronecker, a mathematician whose ideas have placed their stamp on the development of numerous branches of modern mathematics. Professor Hensel won his own first mathematical laurels by his completion of Kronecker's theory of algebraic numbers. The present volume contains the second part of Kronecker's papers on elliptic functions and minor papers on function theory, potential, and mathe matical physics. Then follows a set of shorter notes on a great variety of sub jects ranging from number theory to physics and reflecting the wide interests of Kronecker. Furthermore there are Kronecker's published letters to various mathematicians, addresses and minor statemencs. Among the latter it seems to me that a few might well have been omitted, for example the list of the lectures of Jacobi compiled by Kronecker; the editor seems to have wanted, for the sake of completeness, to include all unpublished articles. Among the letters I shall only mention the famous letter of Kronecker to Dedekind concerning the so-called "Jugendtraum" of Kronecker, that is, the representation of the numbers of a relative Abelian field with respect to a quadratic imaginary field by means of singular moduli. -
~2 Q ! / Date an EXPOSITION on the KRONECKER-WEBER THEOREM
An exposition on the Kronecker-Weber theorem Item Type Thesis Authors Baggett, Jason A. Download date 24/09/2021 09:05:39 Link to Item http://hdl.handle.net/11122/11349 AN EXPOSITION ON THE KRONECKER-WEBER THEOREM By Jason A. Baggett RECOMMENDED: Advisory Committee Chair Chair, Department of Mathematics APPROVED: Dean, College of Natural §sztfmce and Mathematics ; < r Dean of the Graduate School ~2 Q_! / Date AN EXPOSITION ON THE KRONECKER-WEBER THEOREM A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Jason A. Baggett, B.S. Fairbanks, Alaska May 2011 iii Abstract The Kronecker-Weber Theorem is a classification result from Algebraic Number Theory. Theorem (Kronecker-Weber). Every finite, abelian extension Qof is contained in a cyclo- tomic field. This result was originally proven by Leopold Kronecker in 1853. However, his proof had some gaps that were later filled by Heinrich Martin Weber in 1886 and David Hilbert in 1896. Hilbert's strategy for the proof eventually led to the creation of the field of mathematics called Class Field Theory, which is the study of finite, abelian extensions of arbitrary fields and is still an area of active research. Not only is the Kronecker-Weber Theorem surprising, its proof is truly amazing. The idea of the proof is that for a finite, Galois extension K of Q, there is a connection be tween the Galois group Gal(K/Q) and how primes of Z split in a certain subring R of K corresponding to Z in Q. -
The Hurwitz and Lipschitz Integers and Some Applications
The Hurwitz and Lipschitz Integers and Some Applications Nikolaos Tsopanidis UC|UP joint PhD Program in Mathematics Tese de Doutoramento apresentada à Faculdade de Ciências da Universidade do Porto D Departamento de Matemática 2020 The Hurwitz and Lipschitz Integers and Some Applications Nikolaos Tsopanidis UC|UP Joint PhD Program in Mathematics Programa Inter-Universitário de Doutoramento em Matemática PhD Thesis | Tese de Doutoramento January 2021 Acknowledgements The undertaking of a PhD in mathematics, and in particular in number theory, is a very challenging task. As a friend once said, doing a PhD just demonstrates your ability to suffer for a long period of time. During my PhD years many adversities arose to make my life difficult, and questioned my determination and therefore the outcome of my studies. The completion of this thesis was made possible, with the help of many people. First and foremost is my supervisor, António Machiavelo. From scholarship issues to pandemics, you were there for me, helping me in every possible way, suffering through my messy ways and trying to put some order into my chaos. Thank you for everything! I would also like to thank the good friends that I made during these years in Portugal. You guys know who you are, you helped me through the hardships and gave me some great moments to remember, without you all these would have been meaningless. Finally I want to thank my parents together with my brother and sister for their continuing support through the years. I would like to acknowledge the financial support by the FCT — Fundação para a Ciência e a Tecnologia, I.P.—, through the grants with references PD/BI/143152/2019, PD/BI/135365/2017, PD/BI/113680/2015, and by CMUP — Centro de Matemática da Universidade do Porto —, which is financed by national funds through FCT under the project with reference UID/MAT/00144/2020.