Accumulation and Metabolism of Neutral Lipids in Obesity

Total Page:16

File Type:pdf, Size:1020Kb

Accumulation and Metabolism of Neutral Lipids in Obesity Accumulation and Metabolism of Neutral Lipids in Obesity By JOHN DAVID DOUGLASS A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Nutritional Sciences written under the direction of Judith Storch and approved by ________________________ ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey [January, 2014] ABSTRACT OF THE DISSERTATION Accumulation and Metabolism of Neutral Lipids in Obesity by John David Douglass Dissertation Director: Judith Storch The ectopic deposition of fat in liver and muscle during obesity is well established, however surprisingly little is known about the intestine. We used ob/ob mice and wild type (C57BL6/J) mice fed a high-fat diet (HFD) for 3 weeks, to examine the effects on intestinal mucosal triacylglycerol (TG) accumulation and secretion. Obesity and high-fat feeding resulted in higher levels of mucosal TG and markedly decreased rates of chylomicron secretion, accompanied by alterations in intestinal genes related to anabolic and catabolic lipid metabolism pathways. Overall, the results demonstrate that during obesity and a HFD, the intestinal mucosa exhibits metabolic dysfunction. There is indirect evidence that the lipolytic enzyme monoacylglycerol lipase (MGL) may be involved in the development of obesity. We therefore examined the role of MG metabolism in energy homeostasis using wild type and MGL-/- mice fed low-fat or high-fat diets for 12 weeks. Tissue MG species were profoundly increased, as expected. Notably, weight gain was blunted in all MGL-/- mice. MGL null mice were also leaner, and had increased fat oxidation on the low-fat diet. Circulating lipids levels were decreased in high fat-fed MGL-/- mice, as were the levels of several plasma peptides involved in energy homeostasis. Interestingly, MGL-/- mice had a blunted rate of intestinal TG secretion following an oral fat challenge. The leaner phenotype and improved metabolic serum profile in MGL-/- mice suggested that pharmacological inhibition may be a potential treatment for metabolic disease. To further examine this, C57BL6/J mice were fed low-fat and high-fat diets for 12 weeks, and then given daily oral administration of ii vehicle or a novel reversible MGL inhibitor for 4 days or 27 days. No changes in food intake were found, nor were adiposity or glucose intolerance substantially altered by inhibitor treatment; this is likely due to the short-term effectiveness of the inhibitor, as the compound was barely detectable 7 hours following administration. Thus, the effects of transient MGL inhibition on energy metabolism are minimal, in contrast to chronic inhibition secondary to genetic ablation. iii Acknowledgements I would like to foremost thank my advisor Dr. Judy Storch, whose guidance and acute editing skills I have relied upon for these past five years. I also thank my dissertation committee, Dr. Malcolm Watford, Dr. Dawn Brasaemle, Dr. Greg Henderson, and Dr. Marge Connelly, for their feedback and oversight of my research. My beloved Storch lab members, Yin Xiu, Sarala, Leslie, and Angela, must be thanked for contributing their expertise and patience towards the research and my training as a scientist. I would also like to thank the Nutritional Sciences Department and the Nutritional Sciences Graduate Program for providing the necessary structure and resources that made this dissertation possible. My gratitude goes to the Rutgers Center for Lipid Research and its members, who are united under the common goal of furthering lipid research in service of human health. I also thank our collaborators at Janssen R&D who allowed us to pursue novel research ideas and provided key analytical support. The seeds of higher education were planted while watching my father Dr. David Douglass tapping away on his own dissertation on a typewriter in our home basement. Inspiration for pursuing a career in science came from Dr. Dennis Winge and Dr. Lisa Joss-Moore. Finally, I owe a debt of gratitude to my dear wife Dr. Katherine Douglass, an exemplar for momentum in life, and whose ability to push through “analysis paralysis” and the tedious aspects of academia is nothing short of incredible. iv Table of Contents Abstract………………………………………….….….….….….………………………………………………….……..ii Acknowledgements…………….……………………………………………………………….…....…….………...iv List of Tables…………………….….……………………………………………………………….…....….…………..viii List of Figures………………….……………….………………………………………………………………..……..…ix List of Abbreviations……….………………………….…………………………….….….…….…….…….…......xi Page Chapter 1: Introduction and Review of the Literature 1 1. Introduction 2 2. Intestinal lipid metabolism 3 2.1 The Small Intestine 3 2.2 Digestion of Dietary Lipids 4 2.3 Uptake, Transport, and Absorption of Dietary Fatty Acids and Monoacylglycerol 6 2.4 Intracellular Lipid Metabolism in Enterocytes 7 3. Monoacylglycerols 13 3.1 Formation and Biosynthesis of MG 13 3.2 Anabolism and Catabolism of MG 13 4. Monoacylglycerol Lipase 17 4.1 Monoacylglycerol Lipase: From Gene to Regulation 17 4.2 Monoacylglycerol Lipase: Physiological Roles 21 4.3 Monoacylglycerol Lipase: Transgenic Models 22 4.4 Monoacylglycerol Lipase: Knockout Models 24 v 4.4 Monoacylglycerol Lipase: Pharmacological Inhibition 25 5. The Endocannabinoid System 27 5.1 Overview of the EC System 27 5.2 Components and Mechanisms of the System 27 5.3 Role in Energy Homeostasis 31 5.4 Dysregulation in Metabolic Disorders 33 6. Specific Aims of the Studies 34 Chapter 2: Intestinal mucosal triacylglycerol accumulation secondary to decreased 36 lipid secretion in obese and high fat-fed mice Abstract 37 Introduction 38 Materials and Methods 40 Results 47 Discussion 55 Chapter 3: Monoacylglycerol lipase ablation in mice alters energy homeostasis and 60 diet induced obesity Abstract 61 Introduction 62 Materials and Methods 65 Results 74 Discussion 89 vi Chapter 4: Short-term reversible pharmacological inhibition of monoacylglycerol 95 lipase in mice does not alter food intake or diet induced obesity Abstract 96 Introduction 97 Materials and Methods 100 Results 106 Discussion 117 Chapter 5: General Conclusions and Future Directions 120 Appendix: Metabolism of apically and basolaterally delivered fatty acids in the 128 intestinal mucosa of acyl coA synthetase 5-deficient mice Acknowledgement of Collaborative Efforts and Previous Publications 140 Literature Cited 144 vii List of Tables Chapter 2 Page Table 2-1. Diet Composition 41 Table 2-2. Primer sequences used for qRT-PCR analyses 45 Chapter 3 Table 3-1. Diet Composition 68 Table 3-2. Primer sequences used for RT-PCR analyses 72 Table 3-3. Plasma peptide levels in male mice as analyzed by 87 multiplex immunoassay Chapter 4 Table 4-1. Acute MGL inhibitor dosing protocol 102 Table 4-2. Chronic MGL inhibitor dosing protocol 103 viii List of Figures Chapter 1 Page Figure 1-1. Intestinal lipid absorption 12 Figure 1-2. Hydrolysis of MG by MGL 16 Figure 1-3. Three-dimensional structure of MGL 20 Figure 1-4. Over-expression of intestine MGL in mice (iMGL) depletes mucosal 23 MG levels and induces an obese, hyperphagic phenotype Figure 1-5. Overview of endocannabinoid system in neurons 30 Chapter 2 Figure 2-1. Weight and body fat of mouse models 48 Figure 2-2. Intestinal mucosa TG content in fed and 12 h fasted mice 49 Figure 2-3. Lipid accumulation in fed state proximal intestinal mucosa. 51 Figure 2-4. Relative quantitation of mRNA expression of lipid metabolic and 52 transport genes Figure 2-5. Oral fat tolerance tests 54 Chapter 3 Figure 3-1. Ablation of gene and function in MGL-/- mice 75 Figure 3-2. Tissue content of MG species as determined by HPLC-MS analysis 76 Figure 3-3. Tissue content of acylethanolamide (EA) species as determined by 77 HPLC-MS analysis Figure 3-4. Body weights during 12 weeks of LFD or HFD feeding 79 Figure 3-5. Body composition and tissue weights in MGL-/- mice 80 ix Figure 3-6. Energy consumption and utilization for male mice 81 Figure 3-7. Reduced appearance of TG from an oral fat bolus in the blood of 12 83 week HFD-fed male MGL-/- mice Figure 3-8. Oral glucose tolerance test. 84 Figure 3-9. Plasma lipids in 12 h fasted male mice after 12 weeks of LF or HF 85 feeding Figure 3-10. Tissue gene expression measured by RT-PCR and analyzed by ddCT 88 method. Chapter 4 Figure 4-1. Blood levels of MGL inhibitor JNJ-MGLi taken 1.5 and 7 h after oral 107 administration Figure 4-2. Tissue monoacylglycerol (MG) levels after 4 and 27 days of 108 compound administration Figure 4-3. Tissue acylethanolamide (EA) levels after 4 and 27 days of 109 compound administration Figure 4-4. Body weights during the 4 day (acute) and 27 day (chronic) 111 compound administration Figure 4-5. Body fat for the chronic study 112 Figure 4-6. Food intake during the 5-day (acute) and 28 day (chronic) 113 compound administration Figure 4-7. Food intake in each day of acute compound administration 114 Figure 4-8. Oral glucose tolerance test on day 24 in the chronic study 116 x List of Abbreviations 2-AG 2-arachidonoyl glycerol 2-AG-d8 Deuterated 2-arachidonoyl glycerol 2-MG sn-2-monoacylglycerol 2-OG 2-oleoyl glycerol 2-PG 2-palmitoyl glycerol 2-SG 2-stearoyl glycerol AA Arachidonic acid ABHD α-β hydrolase ACC1 Acetyl-CoA carboxylase 1 ACO Acyl-coA oxidase ACS Acyl-CoA synthetase ACSL Long chain acyl CoA synthetase AEA Arachidonoyl ethanolamide AEA-d8 Deuterated arachidonoylethanolamide AgRP
Recommended publications
  • Inhibition of Monoacylglycerol Lipase Reduces the Reinstatement Of
    International Journal of Neuropsychopharmacology (2019) 22(2): 165–172 doi:10.1093/ijnp/pyy086 Advance Access Publication: November 27, 2018 Regular Research Article regular research article Inhibition of Monoacylglycerol Lipase Reduces the Reinstatement of Methamphetamine-Seeking and Anxiety-Like Behaviors in Methamphetamine Self-Administered Rats Yoko Nawata, Taku Yamaguchi, Ryo Fukumori, Tsuneyuki Yamamoto Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, Nagasaki, Japan Correspondence: Tsuneyuki Yamamoto, PhD, Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, 2825–7 Huis Ten Bosch Sasebo, Nagasaki 859–3298, Japan ([email protected]). Abstract Background: Methamphetamine is a highly addictive psychostimulant with reinforcing properties. Our laboratory previously found that Δ8-tetrahydrocannabinol, an exogenous cannabinoid, suppressed the reinstatement of methamphetamine- seeking behavior. The purpose of this study was to determine whether the elevation of endocannabinoids modulates the reinstatement of methamphetamine-seeking behavior and emotional changes in methamphetamine self-administered rats. Methods: Rats were tested for the reinstatement of methamphetamine-seeking behavior following methamphetamine self- administration and extinction. The elevated plus-maze test was performed in methamphetamine self-administered rats during withdrawal. We investigated the effects of JZL184 and URB597, 2 inhibitors of endocannabinoid hydrolysis, on the reinstatement of methamphetamine-seeking and anxiety-like behaviors. Results: JZL184 (32 and 40 mg/kg, i.p.), an inhibitor of monoacylglycerol lipase, significantly attenuated both the cue- and stress-induced reinstatement of methamphetamine-seeking behavior. Furthermore, URB597 (3.2 and 10 mg/kg, i.p.), an inhibitor of fatty acid amide hydrolase, attenuated only cue-induced reinstatement. AM251, a cannabinoid CB1 receptor antagonist, antagonized the attenuation of cue-induced reinstatement by JZL184 but not URB597.
    [Show full text]
  • 2-Arachidonoylglycerol a Signaling Lipid with Manifold Actions in the Brain
    Progress in Lipid Research 71 (2018) 1–17 Contents lists available at ScienceDirect Progress in Lipid Research journal homepage: www.elsevier.com/locate/plipres Review 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain T ⁎ Marc P. Baggelaara,1, Mauro Maccarroneb,c,2, Mario van der Stelta, ,2 a Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands. b Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy c European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy ABSTRACT 2-Arachidonoylglycerol (2-AG) is a signaling lipid in the central nervous system that is a key regulator of neurotransmitter release. 2-AG is an endocannabinoid that activates the cannabinoid CB1 receptor. It is involved in a wide array of (patho)physiological functions, such as emotion, cognition, energy balance, pain sensation and neuroinflammation. In this review, we describe the biosynthetic and metabolic pathways of 2-AG and how chemical and genetic perturbation of these pathways has led to insight in the biological role of this signaling lipid. Finally, we discuss the potential therapeutic benefits of modulating 2-AG levels in the brain. 1. Introduction [24–26], locomotor activity [27,28], learning and memory [29,30], epileptogenesis [31], neuroprotection [32], pain sensation [33], mood 2-Arachidonoylglycerol (2-AG) is one of the most extensively stu- [34,35], stress and anxiety [36], addiction [37], and reward [38]. CB1 died monoacylglycerols. It acts as an important signal and as an in- receptor signaling is tightly regulated by biosynthetic and catabolic termediate in lipid metabolism [1,2].
    [Show full text]
  • A Dissertation Entitled Uncovering Cannabinoid Signaling in C. Elegans
    A Dissertation Entitled Uncovering Cannabinoid Signaling in C. elegans: A New Platform to Study the Effects of Medicinal Cannabis By Mitchell Duane Oakes Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biology ________________________________________ Dr. Richard Komuniecki, Committee Chair _______________________________________ Dr. Bruce Bamber, Committee Member ________________________________________ Dr. Patricia Komuniecki, Committee Member ________________________________________ Dr. Robert Steven, Committee Member ________________________________________ Dr. Ajith Karunarathne, Committee Member ________________________________________ Dr. Jianyang Du, Committee Member ________________________________________ Dr. Amanda Bryant-Friedrich, Dean College of Graduate Studies The University of Toledo August 2018 Copyright 2018, Mitchell Duane Oakes This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Uncovering Cannabinoid Signaling in C. elegans: A New Platform to Study the Effects of Medical Cannabis By Mitchell Duane Oakes Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biology The University of Toledo August 2018 Cannabis or marijuana, a popular recreational drug, alters sensory perception and exerts a range of medicinal benefits. The present study demonstrates that C. elegans exposed to
    [Show full text]
  • The Expanded Endocannabinoid System/Endocannabinoidome As a Potential Target for Treating Diabetes Mellitus
    Current Diabetes Reports (2019) 19:117 https://doi.org/10.1007/s11892-019-1248-9 OBESITY (KM GADDE, SECTION EDITOR) The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus Alain Veilleux1,2,3 & Vincenzo Di Marzo1,2,3,4,5 & Cristoforo Silvestri3,4,5 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review The endocannabinoid (eCB) system, i.e. the receptors that respond to the psychoactive component of cannabis, their endogenous ligands and the ligand metabolic enzymes, is part of a larger family of lipid signals termed the endocannabinoidome (eCBome). We summarize recent discoveries of the roles that the eCBome plays within peripheral tissues in diabetes, and how it is being targeted, in an effort to develop novel therapeutics for the treatment of this increasingly prevalent disease. Recent Findings As with the eCB system, many eCBome members regulate several physiological processes, including energy intake and storage, glucose and lipid metabolism and pancreatic health, which contribute to the development of type 2 diabetes (T2D). Preclinical studies increasingly support the notion that targeting the eCBome may beneficially affect T2D. Summary The eCBome is implicated in T2D at several levels and in a variety of tissues, making this complex lipid signaling system a potential source of many potential therapeutics for the treatments for T2D. Keywords Endocannabinoidome . Bioactive lipids . Peripheral tissues . Glucose . Insulin Introduction: The Endocannabinoid System cannabis-derived natural product, Δ9-tetrahydrocannabinol and its Subsequent Expansion (THC), responsible for most of the psychotropic, euphoric to the “Endocannabinoidome” and appetite-stimulating actions (via CB1 receptors) and immune-modulatory effects (via CB2 receptors) of marijuana, The discovery of two G protein-coupled receptors, the canna- opened the way to the identification of the endocannabinoids binoid receptor type-1 (CB1) and − 2 (CB2) [1, 2], for the (eCBs).
    [Show full text]
  • Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model
    Glaucoma Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model Sally Miller,1 Emma Leishman,1 Sherry Shujung Hu,2 Alhasan Elghouche,1 Laura Daily,1 Natalia Murataeva,1 Heather Bradshaw,1 and Alex Straiker1 1Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States 2Department of Psychology, National Cheng Kung University, Tainan, Taiwan Correspondence: Alex Straiker, De- PURPOSE. Cannabinoids, such as D9-THC, act through an endogenous signaling system in the partment of Psychological and Brain vertebrate eye that reduces IOP via CB1 receptors. Endogenous cannabinoid (eCB) ligand, 2- Sciences, Indiana University, Bloom- arachidonoyl glycerol (2-AG), likewise activates CB1 and is metabolized by monoacylglycerol ington, IN 47405, USA; lipase (MAGL). We investigated ocular 2-AG and its regulation by MAGL and the therapeutic [email protected]. potential of harnessing eCBs to lower IOP. Submitted: February 16, 2016 Accepted: May 16, 2016 METHODS. We tested the effect of topical application of 2-AG and MAGL blockers in normotensive mice and examined changes in eCB-related lipid species in the eyes and spinal Citation: Miller S, Leishman E, Hu SS, cord of MAGL knockout (MAGLÀ/À) mice using high performance liquid chromatography/ et al. Harnessing the endocannabinoid tandem mass spectrometry (HPLC/MS/MS). We also examined the protein distribution of 2-arachidonoylglycerol to lower intra- ocular pressure in a murine model. MAGL in the mouse anterior chamber. Invest Ophthalmol Vis Sci. RESULTS. 2-Arachidonoyl glycerol reliably lowered IOP in a CB1- and concentration-dependent 2016;57:3287–3296. DOI:10.1167/ manner. Monoacylglycerol lipase is expressed prominently in nonpigmented ciliary iovs.16-19356 epithelium.
    [Show full text]
  • 1. Endocannabinoid System (ECS)
    UNIVERSITÀ DI PISA Dipartimento di Farmacia Corso di Laurea Specialistica in Chimica e Tecnologia Farmaceutiche Tesi di Laurea: DESIGN AND SYNTHESIS OF HETEROCYCLIC DERIVATIVES AS POTENTIAL MAGL INHIBITORS Relatori: Prof. Marco Macchia Candidato: Glenda Tarchi Prof.ssa Clementina Manera (matricola N° 445314) Dott.ssa Chiara Arena Settore Scientifico Disciplinare: CHIM-08 ANNO ACCADEMICO 2013–2014 INDEX Sommario INDEX ......................................................................................... 3 1. Endocannabinoid system (ECS) ......................................... 6 1.1 Endocannabinoid receptors ........................................................... 7 1.2 Mechanism of endocannabinoid neuronal signaling ..................... 9 1.3 Endocannabinoids biosynthesis ................................................... 11 1.4 Enzymes involved in endocannabinoids degradation ................. 16 1.4.1 FAAH ........................................................................................................ 16 1.4.2 MAGL ....................................................................................................... 18 1.4.3 ABHD6 ..................................................................................................... 20 1.4.4 ABDH12 ................................................................................................... 21 2. MAGL like pharmacological target ................................ 23 2.1 The role of MAGL in pain and inflammation ............................. 24 2.1.1 Relation between
    [Show full text]
  • JZL184, a Monoacylglycerol Lipase Inhibitor, Induces Bone Loss in a Multiple Myeloma Model of Immunocompetent Mice
    This is a repository copy of JZL184, a monoacylglycerol lipase inhibitor, induces bone loss in a multiple myeloma model of immunocompetent mice. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/159815/ Version: Published Version Article: Marino, S., Carrasco, G., Li, B. et al. (5 more authors) (2020) JZL184, a monoacylglycerol lipase inhibitor, induces bone loss in a multiple myeloma model of immunocompetent mice. Calcified Tissue International, 107 (1). pp. 72-85. ISSN 0171-967X https://doi.org/10.1007/s00223-020-00689-0 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Calcified Tissue International https://doi.org/10.1007/s00223-020-00689-0 ORIGINAL RESEARCH JZL184, A Monoacylglycerol Lipase Inhibitor, Induces Bone Loss in a Multiple Myeloma Model of Immunocompetent Mice Silvia Marino1,2 · Giovana Carrasco1 · Boya Li1 · Karan M. Shah1 · Darren L. Lath1 · Antonia Sophocleous3 · Michelle A. Lawson1 · Aymen I. Idris1 Received: 17 December 2019 / Accepted: 26 March 2020 © The Author(s) 2020 Abstract Multiple myeloma (MM) patients develop osteolysis characterised by excessive osteoclastic bone destruction and lack of osteoblast bone formation.
    [Show full text]
  • Multiple Forms of Endocannabinoid and Endovanilloid Signaling Regulate the Tonic Control of GABA Release
    The Journal of Neuroscience, July 8, 2015 • 35(27):10039–10057 • 10039 Cellular/Molecular Multiple Forms of Endocannabinoid and Endovanilloid Signaling Regulate the Tonic Control of GABA Release X Sang-Hun Lee,1* Marco Ledri,2* Blanka To´th,3* Ivan Marchionni,1 Christopher M. Henstridge,2 XBarna Dudok,2,4 Kata Kenesei,2 La´szlo´ Barna,2 Szila´rd I. Szabo´,2 Tibor Renkecz,3 XMichelle Oberoi,1 Masahiko Watanabe,5 Charles L. Limoli,7 George Horvai,3,6 Ivan Soltesz,1* and XIstva´n Katona2* 1Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California 92697, 2Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary, 3Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary, 4School of PhD Studies, Semmelweis University, H-1769 Budapest, Hungary, 5Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan, 6MTA-BME Research Group of Technical Analytical Chemistry, H-1111 Budapest, Hungary, and 7Department of Radiation Oncology, University of California, Irvine, California 92697 PersistentCB1cannabinoidreceptoractivitylimitsneurotransmitterreleaseatvarioussynapsesthroughoutthebrain.However,itisnotfullyunderstood how constitutively active CB1 receptors, tonic endocannabinoid signaling, and its regulation by multiple serine hydrolases contribute to the synapse- specific calibration of neurotransmitter release probability. To address this
    [Show full text]
  • Neuregulin-1 Impairs the Long-Term Depression of Hippocampal Inhibitory Synapses by Facilitating the Degradation of Endocannabinoid 2-AG
    15022 • The Journal of Neuroscience, September 18, 2013 • 33(38):15022–15031 Cellular/Molecular Neuregulin-1 Impairs the Long-term Depression of Hippocampal Inhibitory Synapses by Facilitating the Degradation of Endocannabinoid 2-AG Huizhi Du,1 In-Kiu Kwon,1 and Jimok Kim1,2 1Institute of Molecular Medicine and Genetics and 2Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912 Endocannabinoids play essential roles in synaptic plasticity; thus, their dysfunction often causes impairments in memory or cognition. However, it is not well understood whether deficits in the endocannabinoid system account for the cognitive symptoms of schizophrenia. Here, we show that endocannabinoid-mediated synaptic regulation is impaired by the prolonged elevation of neuregulin-1, the abnor- mality of which is a hallmark in many patients with schizophrenia. When rat hippocampal slices were chronically treated with neuregulin-1, the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids, was enhanced due to the increased expression of its degradative enzyme, monoacylglycerol lipase. As a result, the time course of depolarization-induced 2-AG signaling was shortened, and the magnitude of 2-AG-dependent long-term depression of inhibitory synapses was reduced. Our study reveals that an alteration in the signaling of 2-AG contributes to hippocampal synaptic dysfunction in a hyper-neuregulin-1 condition and thus provides novel insights into potential schizophrenic therapeutics that target the endocannabinoid system. Introduction 2009); however, the pathological mechanisms of eCBs are Endocannabinoids (eCBs) are involved in cognitive and emo- uncertain. tional behaviors via the regulation of synaptic plasticity (Zanet- The expression and function of neuregulin-1 (NRG1), a tini et al., 2011; Castillo et al., 2012).
    [Show full text]
  • Metabolic Enzyme/Protease
    Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com Metabolic Enzyme/Protease Metabolic pathways are enzyme-mediated biochemical reactions that lead to biosynthesis (anabolism) or breakdown (catabolism) of natural product small molecules within a cell or tissue. In each pathway, enzymes catalyze the conversion of substrates into structurally similar products. Metabolic processes typically transform small molecules, but also include macromolecular processes such as DNA repair and replication, and protein synthesis and degradation. Metabolism maintains the living state of the cells and the organism. Proteases are used throughout an organism for various metabolic processes. Proteases control a great variety of physiological processes that are critical for life, including the immune response, cell cycle, cell death, wound healing, food digestion, and protein and organelle recycling. On the basis of the type of the key amino acid in the active site of the protease and the mechanism of peptide bond cleavage, proteases can be classified into six groups: cysteine, serine, threonine, glutamic acid, aspartate proteases, as well as matrix metalloproteases. Proteases can not only activate proteins such as cytokines, or inactivate them such as numerous repair proteins during apoptosis, but also expose cryptic sites, such as occurs with β-secretase during amyloid precursor protein processing, shed various transmembrane proteins such as occurs with metalloproteases and cysteine proteases, or convert receptor agonists into antagonists and vice versa such as chemokine conversions carried out by metalloproteases, dipeptidyl peptidase IV and some cathepsins. In addition to the catalytic domains, a great number of proteases contain numerous additional domains or modules that substantially increase the complexity of their functions.
    [Show full text]
  • Unidirectional Opioid-Cannabinoid Cross-Tolerance in the Modulation of Social Play Behavior in Rats
    Psychopharmacology (2019) 236:2557–2568 https://doi.org/10.1007/s00213-019-05226-y ORIGINAL INVESTIGATION Unidirectional opioid-cannabinoid cross-tolerance in the modulation of social play behavior in rats Sara Schiavi1 & Antonia Manduca 1 & Marco Segatto1 & Patrizia Campolongo2 & Valentina Pallottini 1 & Louk J. M. J. Vanderschuren3 & Viviana Trezza1 Received: 16 November 2018 /Accepted: 10 March 2019 /Published online: 22 March 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Rationale The endocannabinoid and the endogenous opioid systems interact in the modulation of social play behavior, a highly rewarding social activity abundantly expressed in young mammals. Prolonged exposure to opioid or cannabinoid receptor agonists induces cross-tolerance or cross-sensitization to their acute behavioral effects. Objectives and methods Behavioral and biochemical experiments were performed to investigate whether cross-tolerance or cross-sensitization occurs to the play-enhancing effects of cannabinoid and opioid drugs on social play behavior, and the possible brain substrate involved. Results The play-enhancing effects induced by systemic administration of JZL184, which inhibits the hydrolysis of the endocannabinoid 2-AG, were suppressed in animals repeatedly pretreated with the opioid receptor agonist morphine. Conversely, acute morphine administration increased social play in rats pretreated with vehicle or with either JZL184 or the cannabinoid agonist WIN55,212-2. Acute administration of JZL184 increased the activation of both CB1 receptors and their effector Akt in the nucleus accumbens and prefrontal cortex, brain regions important for the expression of social play. These effects were absent in animals pretreated with morphine. Furthermore, only animals repeatedly treated with morphine and acutely administered with JZL184 showed reduced activation of CB1 receptors and Akt in the amygdala.
    [Show full text]
  • Neurobiological Processes Induced by Aerobic Exercise Through the Endocannabinoidome
    cells Review Neurobiological Processes Induced by Aerobic Exercise through the Endocannabinoidome Fabiola Forteza 1,2,3, Giada Giorgini 3,4 and Frédéric Raymond 1,2,3,* 1 Centre Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Food (INAF), Université Laval, Québec, QC G1V 0A6, Canada; [email protected] 2 École de Nutrition, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada 3 Canada Excellence Research Chair in Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec, QC G1V 4G5, Canada; [email protected] 4 Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, QC G1V 4G5, Canada * Correspondence: [email protected] Abstract: Evidence suggesting the triangulation of the endocannabinoid system, exercise, and neurological health is emerging. In addition to the endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), the expanded endocannabinoid system, known as the endocannabinoidome (eCBome), appears to be an important player in this relationship. The eCBome includes several endocannabinoid-like mediators such as N-acylethanolamines and 2-monoacylglycerols, the enzymes involved in their biosynthesis and degradation, and the receptors they affect. This review aims to relate the functional interactions between aerobic exercise, and the molecular and cellular pathways related to endocannabinoids, in the hypothalamus, hippocampus, Citation: Forteza, F.; Giorgini, G.; and the periphery, with special attention given to associations with emotional state, cognition, Raymond, F. Neurobiological and mental health. Given the well-documented roles of many eCBome members in regulating Processes Induced by Aerobic stress and neurological processes, we posit that the eCBome is an important effector of exercise- Exercise through the induced central and peripheral adaptive mechanisms that benefit mental health.
    [Show full text]