<<

BOBCAT PREDATION ON , , AND MESOMAMMALS

Michael E. Tewes Caesar Kleberg Wildlife Research Institute, MSC 218, A&M University, Kingsville, TX 78363, USA

Jennifer M. Mock Caesar Kleberg Wildlife Research Institute, MSC 218, Texas A&M University, Kingsville, TX 78363, USA

John H. Young Texas Parks and Wildlife Department, Wildlife Diversity Program, 3000 IH 35 South, Suite 100, Austin, TX 78704, USA

ABSTRACT

We reviewed 54 scientific articles about ( rufus) food habits to determine the occurrence of quail, birds, and mesopredators including red ( vulpes) and gray ( cinereoargenteus), ( lotor), (Mephitis spp.), and opossum (Didelphis virginianus). Quail ( virginianus, Cyrtonyx montezumae, squamata, C. gambelii, C. californica, Oreortyx pictus) were found in 9 diet studies and constituted Ͼ3% of the bobcat diet in only 2 of 54 studies. Birds occurred in 47 studies, but were also a minor dietary component in most studies. Although mesopredators were represented as bobcat prey in 33 of 47 studies, their percent occurrence within bobcat diets was low and showed regional patterns of occurrence. are a minor quail predator, but felid effects on mesopredators and secondary impacts on quail need to be studied.

Citation: M. E. Tewes, J. M. Mock, and J. H. Young. 2002. Bobcat predation on quail, birds, and mesomammals. Pages 65Ð70 in S. J. DeMaso, W. P. Kuvlesky, Jr., F. Herna«ndez, and M. E. Berger, eds. Quail V: Proceedings of the Fifth National Quail Symposium. Texas Parks and Wildlife Department, Austin, TX.

Key words: bobcat, quail, Callipepla californica, C. gambelii, C. squamata, Colinus virginianus, Cyrtonyx montezumae, depredation, diet, food habits, Gamble’s quail, Lynx rufus, mesomammal, mesopredator, Montezuma quail, mountain quail, , Oreortyx pictus, scaled quail

INTRODUCTION mesopredators within their communities, and the re- duction of bobcat populations with predator control or The role of bobcat depredation on quail is often fur harvest may have an indirect effect on the popu- debated by hunters, wildlife managers, and state agen- lation sizes and distributions of potentially more seri- cy personnel. Although researchers have studied pred- ous quail predators. Consequently, we gathered infor- ators of specific quail populations, a particular quail mation on the presence of known mesopredators in the was often the research focus while a variety of diets of bobcats. predators were monitored (Burger et al. 1995, Taylor et al. 2000). Food habit studies focusing on particular predators have often been overlooked by quail re- METHODS searchers and managers. One reason is this information is spread among a variety of literature sources and un- We reviewed studies examining bobcat food habits der titles exclusive of quail. Consequently, quail man- in various locations over North America. Most of the agers, biologists, and researchers are unaware of these studies were conducted in the , although sources that focus on bobcat diets. a few occurred in Canada or . Our paper extensively reviews literature about the Sources for ‘data mining’ and information collec- food habits and foraging ecology of bobcats in North tion of bobcat food habits included journal articles, America to determine the relative importance of quail conference proceedings, books, theses, and disserta- in bobcat diets. The presence of birds in bobcat diets tions. A Microsoft Excel spreadsheet was developed was recorded because some studies failed to identify to organize selected dietary information, including the avian species. Also, the relative use of avian prey rel- presence of quail, birds, and mesopredators. ative to mammalian prey is important to understanding Additional information gathered from each source bobcat diets and potential for depredation of quail. included study location, dominant habitat or plant Bobcats and other predators (i.e., , rac- community, and method used. Method was recorded coons, opossums, and red and gray ) in each lo- as analysis of 1) scats, 2) gastrointestinal tracts (stom- cale form predator complexes that can have unpre- ach, intestine, and colon), 3) caches or carcasses, and dictable and difficult to assess impacts on quail and 4) visual observation of depredation events. Some- other populations. Bobcats are predators on other times multiple methods (e.g., scat and stomach anal- 65 66 TEWES ET AL. ce for each prey type fox Comments Red spp. Skunk ———— pine Porcu- 5 Rac- coon sum Opos- 5.0 — Tr Ͻ birds Other —— 3.5 ——— 5.9 P ——P ——— 33.3 5.2 — 1.2 — — 15.4 — — 0.6 — — — Quail 1 2 3 4 Quail distr. tinesscat 233 P 48 — P — — 6.9 — 6.5 2.1 12.2 — — — 1.3 — — 0.9 — — — StomachScat 70 A — 1.4 250 I 4.3 — — — 2.0 2.9 1.4 1.6 — — — — 6.8 — — — IntestinesScat 137Stomach, intestines & P 218 — P — 0.9 — 8.0 5.1 13.8 — 5.5 — — — — — — — — — Appalach Scat, stomach & intes- Sherburne 1986 ME Scat 308 A — — 13.3 — — 2.8 — — — Mautz 1984 NH Intestines 388 I Bissonette 1986 ME Scat 452 A — — 13.3 — — 2.8 — — — Parker & Smith 1983Livaitis, Major, & Pollack 1951Rollings CAN 1945Westfall 1956Hamilton & Hunter 1939McCord 1974 N. Stomach VT Eng. MN ME MA Stomach & intestines Stomach 377 208 Stomach A Instestines I — Scat — 7.0 140 1.4 50 A 88 7.0 3.4 — A A — — — 5.5 — — — 43 — 18.3 1.0 6.8 P 1.0 — — — 1.0 — 6.8 — — — — — — — — 7.1 — Cape — Breton Isl., N.S. 10.0 11.4 4.4 0.8 1.0 2.3 0.7 — — Percentage by bulk — — Frequency of occurrence Litvaitis, Clark & HuntManville 1986 1958Litvaitis, Stevens, & MEMills 1984 MI Intestines CAN Stomach & 170 intestines A 8 Scat A — — — 47 — A — — P — — 8.5 — — — — — — — — Nova Scotia, Canada Fox & Fox 1982 WV Stomach 172 P Major & Sherburne 1987Dibello et al. 1990Litvaitis & Harrison 1989Litvaitis et ME al. 1984Litvaitis, Sherburne, & MEBerg 1979 MEKitchings NH & Story 1979Miller Scat & Speake 1978 Scat TN Scat AL MN Intestines 109 Scat A 346 Stomach Stomach 388 452 A — I A — — — — — 15.0 136 — — 73 — 31 9.7 P — A P P — 8.5 — — — — — — — — — P P — — — — P 11.1 P — P 14.0 — 5.9 — 5.0 — 0.7 — — — — — — — — — — 12.0 — — 5.0 — — — — — — — Percent frequency occurrence Percent frequency Story et al. 1982Progulske 1955Kight 1962Buttrey 1979 TNMaehr & VA Brady 1986Wassmer et al. 1988Beasom & Moore 1977Fritts & FL Sealander SC 1978Leopold & FL Scat Krausman 1986Blankenship TN Scat 2000Litvaitis TX 1981 TX ARMahan 1980Rolley 1985Rolley & Warde 1985 StomachLehmann Scat 1984 TX ScatTrevor et al. 1989 Stomach 176 Scat Stomach OK 124 OK P NE P OK 413 TX — Scat ND — P 317 — 125 146 — Scat 150 Stomach P 6.0 Stomach P P 13.1 344 P 16.9 — Stomach 20.0 2.6 6.0 Stomach 9.0 1.4 P Stomach 3.8 1.0 — — — 55.0 — — 653 — — 7.0 — 10.0 11.0 145 4.0 P 32.0 — 17.2 — 0.8 57 7.0 — P — 40 3.4 — 549 0.4 0.2 — 9.0 1.4 P — P — P — Percent — 74 P — — frequency 5.0 — of — occurrence — — 1.8 P — A — — — — — — — 32.8 — — — — — — 4.0 — — — — Frequency 11.0 — — 1.0 — — 0.3 — — P 8.8 — Frequency 27.5 — 13.0 occurrence — — — — — — P Tr 6.9 — — — — — — — — 1.8 — — — — — — — — — — 1.4 — — — — P — 1.4 — — — — — P Grouped — birds and — Percentage of total — prey Table 1. Selected prey items reported in bobcat diet studiesReference from North American betweenNORTHEAST 1939–2000. Results are reported as maximum percent occurren State Method N SOUTHEAST unless otherwise noted. CENTRAL PLAINS BOBCAT PREY SPECIES 67

ysis) were used within the same study. We determined sample sizes for each study and each method of anal- ysis. Percent occurrence within bobcat diets was deter- C. virginianus mined for most studies for quail, birds, and mesopre- dators. We noted the absence of quail distribution with those study sites where bobcat food habit studies oc- curred.

RESULTS We examined 54 scientific sources for information fox Comments ) based on Brennan 1999 for

Gray on bobcat food habits. This survey included 38 journal articles, 10 symposia proceedings, 3 dissertations, 1 fox Red thesis, 1 book chapter, and 1 technical report. Only articles which yielded results from individual studies were used. Previous literature summaries often failed spp. Skunk to provide the specific information that we required, and they were not used in the data summaries.

pine Lagomorphs and rodents were dominant constitu- Porcu- ents of bobcat diets. Forty-seven studies found either Rac- coon quail, birds, or mesopredators in bobcat diets (Table 1), whereas 7 studies found none of these elements. sum

Opos- Dietary studies lacking quail, birds, and mesopredators included Marston (1942), Dill (1947), Cook (1971),

22.0 — — — — — — Primarily sage grouse Beale and Smith (1973), Litvaitis et al. (1982), Lit- birds Other ϳ vaitis et al. (1986b), and Koehler and Hornocker (1991). The following methods were used in the 47 stud- ies: 18 used scats alone, 22 used both stomachs and intestinal analyses, 6 used stomachs and scats, and 1 Quail Grouse used observations of caches, carcasses and predation 1 events. Quail distr. Of the 35 bobcat diet studies that occurred within known or presumed quail distributions, 9 (25.7%) studies identified quail remains. Four of these studies were conducted in the southeast, 4 in the central plains, and 1 in the northwest. Percent occurrence of quail in the bobcat diets of these studies was consistently low (Table 1). Birds were identified in 46 (85.2%) of the studies (Table 1) and percent occurrence of this group was usually Ͻ10%. Grouse were found in 11 (20.4%) of 47 studies. Scat & intestines 81 I — — 2.5 — — — — —Percent — occurrence of medium-sized mammalian predators was usually Ͻ20% in bobcat diets (Table 1). Opossums occurred in 7 of 8 studies from the south- Colinus virginianus, Cyrtonyx montezumae, Callipepla squamata, C. gambelii, C. californica, Oreortyx pictus east and 3 of 10 studies from the central plains (Table 1). Opossums were absent from bobcat diets in the southwest, northwest, and only occurred in 1 of 18

OR Scatstudies from 34 the P northeast. — 2.9 2.9 — — — occurred — — in — 11 of 47 studies, with 6 of these from the southeast. Por- cupines (Erethizon dorsatum) were most commonly found in bobcat diets from the northeast (14 of 18 studies). Eleven of the 47 studies identified skunk (Me- phitis spp.) remains.

DISCUSSION Numerous studies have summarized the prey con- Bailey 1979Brittell et al. 1979Knick et al. 1984Koehler & Hornocker 1989Nussbaum & Maser 1975 ID OR WA Coast Range ID Scat W Scat Stomach Stomach Stomach 143 P 76 160 — 233 324 I I 0.7 I I 13.3 — — — — — — — 6.0 — Tr — 12.0 25.0 5.2 — — — 6.0 — — — — — — — — — — — — — — — — — — — — — — — Percent Percent frequency Percent frequency frequency — occurence Toweill 1982 OR Stomach & intestines 98 P 1.0 — 12.0 — — 6.0 — — — Anderson 1987Gashwiler et al. 1960 UT & NV CO Stomach Visual obs. 53 I — I — — — — 5.7 — C — — 3.8 — — — — — — — — Snow cache Jones & Smith 1979Delibes & Hiraldo 1987Bailey 1972 Mexico AZ Scat Scat ID 540 Scat 176 P I — — — — 55 1.9 — 12.0 I — — — — — — P 0.2 — 2.0 — — — Quail Distr.—Distribution of quail species ( P—Indicates presence. A—Indicates quail are absentI—Indicates from sporadic/inconsistent the quail study distributionTr—Indicates area. within item state found or in study trace area. quantities. Table 1. continued. ReferenceSOUTHWEST State Method1 2 3 N 4 5 NORTHWEST and National Geographic Society (1987) for other species. sumed by bobcats through most of their range (Mc- 68 TEWES ET AL.

Cord and Cardoza 1982, Anderson 1987, Rolley 1987, prey. For example, striped skunks (Mephitis mephitis), Lariviere and Walton 1997). The dominance of lago- opossums, and raccoons can be important predators of morphs and rodents in their diets has been previously adult quail and quail eggs (Brennan 1999, Fies and demonstrated (McCord and Cardoza 1982, Anderson Puckett 2000). These predators are themselves prey for 1987, Rolley 1987, Lariviere and Walton 1997), and bobcats, , and mountain whose actions observed again during this literature survey. However, may effect the impact on quail and other small prey. the primary purpose of this effort was to evaluate the Such a complex system is difficult to study and often occurrence of less common elements in bobcat diets. requires long time periods and considerable resources Although each method (e.g., scat versus stomach anal- to obtain reliable data (Blankenship 2000). Although ysis) has problems and biases, we were able to identify bobcat depredation on quail is a direct trophic link, emerging patterns regarding quail, birds, and mesopre- bobcat predation on mesopredators may have subtle dators. and indirect consequences for quail populations. Quail occurred in Ͼ3% of bobcat scat and gastro- The relative role of mammalian and avian preda- intestinal samples in only 2 of 54 studies. Beasom and tors on quail varies depending on the location of the Moore (1977) found 6% occurrence of northern bob- study, characteristics of predator communities, and white in bobcat stomachs during 1971 and 4% occur- habitat attributes (Burger et al. 1995, Taylor et al. rence in 1972. Maehr and Brady (1986) found 6% fre- 2000). Our understanding of the complex interplay of quency of occurrence of northern bobwhite in bobcat predator communities upon their prey is very limited. stomachs analyzed. Thus, quail were generally absent For example, interference competition between coy- from bobcat diets or represented a low percentage otes ( latrans) and bobcats has been suspected when present. Comparing quail distribution with lo- with coyotes dominant over bobcats (Litvaitis and cation of the bobcat diet studies was useful in devel- Harrison 1989). Coyotes have been documented to kill oping a better assessment of quail presence in bobcat bobcats (Litvaitis and Harrison 1989, Knick 1990). food habits. Bobcat diet studies occurring outside the Removal of selected predators (e.g., coyotes) may re- presumed quail distribution would not detect quail as sult in the release of other predators (e.g., foxes, a diet component. skunks, raccoons, and opossums) (Henke and Bryant Birds as a group were found in 87% of the bobcat 1999) with unintended depredation consequences. It is diets, but the avian component was always consider- possible that the intensive removal of bobcats may al- ably less than the lagomorph or rodent components. low rodents and lagomorphs to increase, thereby at- The literature survey by Lariviere and Walton (1997) tracting other predators which may result in more dep- concluded that were the most important redation on quail and their nests. However, even if taxa of birds consumed by bobcats, but Passeriformes, bobcats and other predators consumed a higher per- Strigiformes, , Accipetridae, and centage of quail, it would not necessarily mean that were also consumed (Fritts and Sealander 1978, Maehr such depredation had a negative effect on the ultimate and Brady 1986, Anderson 1987). The appearance of size of the quail population. Other factors (e.g., habitat grouse in bobcat diets was noted for studies from the quantity and quality) may represent a dominant or lim- northeast and northwest. Bird remains were some- iting effect. times found in bobcat scats but generally not identified to species (Jones and Smith 1979). Bobcats are primarily nocturnal predators with ACKNOWLEDGMENTS crepuscular, bimodal peaks of activity (Buie et al. This is publication no. 02-106 of the Caesar Kle- 1979, Miller and Speake 1979) and reduced midday berg Wildlife Research Institute. activity (Buie et al. 1979, Witmer and DeCalesta 1986). In contrast, quail and most bird species are ac- tive during diurnal periods. This incongruence in ac- LITERATURE CITED tivity periods is probably a major explanation for the infrequency of birds, particularly quail, in bobcat diets. Anderson, E. M. 1987. Bobcat predation on a red-tailed hawk. Southwestern Naturalist 32:149Ð150. Because bobcats rely primarily on visual and auditory Bailey, T. N. 1972. Ecology of bobcats with special reference to senses for hunting and less on olfactory senses, the social organization. Dissertation, University of Idaho, Mos- likelihood of bobcat-quail encounters are reduced at cow. night. Bailey, T. N. 1979. Den ecology, population parameters and diet The occurrence of mesopredators in bobcat diets of eastern Idaho bobcats. Bobcat Research Conference Pro- was also low. However, opossums, raccoons, foxes, ceedings: current research on biology and management of Lynx rufus. National Wildlife Federation, Scientific and and skunks were occasionally encountered. The pop- Technical Series 6, Front Royal, Virginia. ulation densities of mesopredators are usually lower Beale, D. M., and A. D. Smith. 1973. Mortality of pronghorn than those of lagomorphs and rodents, and the removal antelope fawns in western Utah. Journal of Wildlife Man- of a few individual predators by bobcats may have agement 37:343Ð352. relatively greater impacts on the density of mesopre- Beasom, S. L., and R. A. Moore. 1977. Bobcat food habit re- dators than smaller . sponse to a change in prey abundance. Southwestern Nat- uralist 21:451Ð457. The interactions of multiple, sympatric predators Berg, W. E. 1979. Ecology of bobcats in northern Minnesota. on one another and their prey form a complex system Bobcat Research Conference Proceedings: current research which has the potential to affect quail as well as other on biology and management of Lynx rufus. National Wild- BOBCAT PREY SPECIES 69

life Federation, Scientific and Technical Series 6, Front of Lynx rufus. National Wildlife Federation, Scientific and Royal, Virginia. Technical Series 6, Front Royal, Virginia. Blankenship, T. L. 2000. Ecological response of bobcats to fluc- Knick, S. T. 1990. Ecology of bobcats relative to exploitation tuating prey populations on the Welder Wildlife Foundation and a prey decline in southeastern Idaho. Wildlife Mono- Refuge. Dissertation, Texas A&M University and Texas graphs 108. A&M University-Kingsville, College Station and Kings- Knick, S. T., S. J. Sweeney, J. R. Alldredge, and J. D. Brittell. ville. 1984. Autumn and winter food habits of bobcats in Wash- Brennan, L. A. 1999. Northern bobwhite (Colinus virginianus). ington State. Great Basin Naturalist 44:70Ð74. Pages 1Ð4 in A. Poole and F. Gill, eds. The birds of North Koehler, G. M., and M. G. Hornocker. 1989. Influences of sea- America No. 397, Philadelphia, Pennsylvania. sons on bobcats in Idaho. Journal of Wildlife Management Brittell, J. D., S. J. Sweeney, and S. T. Knick. 1979. 53:197Ð202. bobcats: diet, population dynamics and movement. Bobcat Koehler, G. M., and M. G. Hornocker. 1991. Seasonal resource Research Conference Proceedings: current research on bi- use among mountain lions, bobcats, and coyotes. Journal of ology and management of Lynx rufus. National Wildlife Mammalogy 72:391Ð396. Federation, Scientific and Technical Series 6, Front Royal, Lariviere, S., and L. R. Walton. 1997. Lynx rufus. Mammalian Virginia. Species 563:1Ð8. Buie, D. E., T. T. Fendley, and H. McNab. 1979. Fall and winter Lehmann, V. W. 1984. Bobwhites in the Rio Grande Plain of home ranges of adult bobcats on the Savannah River Plant, Texas. Texas A&M University Press, College Station. South Carolina. Proceedings of the Bobcat Research Con- Leopold, B. D., and P. R. Krausman. 1986. Diets of 3 predators ference, National Wildlife Federation, Scientific and Tech- in Big Bend National Park. Journal of Wildlife Management nical Series 6, Front Royal, Virginia. 50:290Ð295. Burger, L. W., Jr., T. V. Dailey, E. W. Kurzejeski, and M. R. Litvaitis, J. A. 1981. A comparison of and bobcat food Ryan. 1995. Survival and cause-specific mortality of north- habits in the Wichita Mountains, . Proceedings of ern bobwhite in Missouri. Journal of Wildlife Management Oklahoma Academy of Science 61:81Ð82. 59:401Ð410. Litvaitis, J. A., J. A. Sherburne, M. O’Donoghue, and D. May. Buttrey, G. W. 1979. Food habits and distribution of the bobcat, 1982. Cannibalism by a free-ranging bobcat, rufus. Lynx rufus rufus (Schreber), on the Catoosa Wildlife Man- Canadian Field-Naturalist 96:476Ð477. agement Area. Bobcat Research Conference Proceedings: Litvaitis, J. A., C. L. Stevens, and W. W. Mautz. 1984. Age, sex, current research on biology and management of Lynx rufus. and weight of bobcats in relation to winter diet. Journal of National Wildlife Federation, Scientific and Technical Se- Wildlife Management 48:632Ð635. ries 6, Front Royal, Virginia. Litvaitis, J. A., A. G. Clark, and J. H. Hunt. 1986a. Prey selec- Cook, R. S., M. White, D. O. Trainer, and W. C. Glazener. 1971. tion and fat deposits of bobcats (Felis rufus) during autumn Mortality of young white-tailed deer fawns in south Texas. and winter in Maine. Journal of Mammalogy 67:389Ð392. Journal of Wildlife Management 35:47Ð56. Litvaitis, J. A., J. T. Major, and J. A. Sherburne. 1986b. Status Delibes, M., and F. Hiraldo. 1987. Food habits of the bobcat in report: bobcat movements in relation to snowshoe hare den- two habitats of the southern Chihuahuan Desert. South- sity. Page 375 in S.D. Miller, and D. D. Everett, eds. western Naturalist 32:457Ð461. of the world: biology, conservation, and management. Na- Dibello, F. J., S. M. Arthur, and W. B. Krohn. 1990. Food habits tional Wildlife Federation, Washington D.C. of sympatric coyotes, Canis latrans, red foxes, Vulpes vul- Litvaitis, J. A., J. A. Sherburne, and J. A. Bissonette. 1986c. pes, and bobcats, Lynx rufus, in Maine. Canadian Field- Bobcat habitat use and home range size in relation to prey Naturalist 104:403Ð408. density. Journal of Wildlife Management 50:110Ð117. Dill, H. H. 1947. Bobcat preys on deer. Journal of Mammalogy Litvaitis, J. A., and D. J. Harrison. 1989. Bobcat-coyote niche 28:63. relationships during a period of coyote population increase. Fies, M. L., and K. M. Puckett. 2000. Depredation patterns of Canadian Journal of Zoology 67:1180Ð1186. northern bobwhite nest predators in Virginia. Proceedings Maehr, D. S., and J. R. Brady. 1986. Food habits of bobcats in of the National Quail Symposium 4:96Ð102. Florida. Journal of Mammalogy 67:133Ð138. Fox, L. B., and J. S. Fox. 1982. Population characteristics and Mahan, C. J. 1980. Winter food habits of Nebraska bobcats (Fel- food habits of bobcats in West Virginia. Proceedings of the is rufus). Prairie Naturalist 12:59Ð63. Annual Conference of the Southeastern Association of Fish Major, J. T., and J. A. Sherburne. 1987. Interspecific relation- and Wildlife Agencies 36:671Ð677. ships of coyotes, bobcats, and red foxes in western Maine. Fritts, S. H., and J. A. Sealander. 1978. Diets of bobcats in Ar- Journal of Wildlife Management 51:1987. with special reference to age and sex differences. Manville, R. H. 1958. Odd items in bobcat stomachs. Journal of Journal of Wildlife Management 42:533Ð539. Mammalogy 39:439. Gashwiler, J. S., W. L. Robinette, and O. W. Morris. 1960. Foods Marston, M. A. 1942. Winter relations of bobcats to white-tailed of bobcats in Utah and eastern . Journal of Wildlife deer in Maine. Journal of Wildlife Management 6:328Ð337. Management 24:226Ð229. McCord, C. M. 1974. Selection of winter habitat by bobcats Hamilton, W. J., Jr., and R. P. Hunter. 1939. Fall and winter (Lynx rufus) on the Quabbin Reservation, Massachusetts. habits of Vermont bobcats. Journal of Wildlife Management Journal of Mammalogy 55:428Ð437. 3:99Ð103. McCord, C. M., and J. E. Cardoza. 1982. Bobcat and lynx: Felis Henke, S. E., and F. C. Bryant. 1999. Effect of coyote removal rufus and F. lynx. Pages 728Ð768 in J. A. Chapman, and on the faunal community in western Texas. Journal of Wild- G. A. Feldhamer, eds. Wild Mammals of North America: life Management 63:1066Ð1081. biology, management, and economics. Johns Hopkins Uni- Jones, J. H., and N. S. Smith. 1979. Bobcat density and prey versity Press, Baltimore, Maryland. selection in central . Journal of Wildlife Manage- Miller, S. D., and D. W. Speake. 1978. Prey utilization by bob- ment 43:666Ð672. cats on quail plantations in southern Alabama. Proceedings Kight, J. 1962. An ecological study of the bobcat, Lynx rufus of the Annual Conference of the Southeastern Association (Schreber), in west-central South Carolina. Thesis, Univer- of Fish and Wildlife Agencies 32:100Ð111. sity of Georgia, Athens. Miller, S. D., and D. W. Speake. 1979. Demography and home Kitchings, J. T., and J. D. Story. 1979. Home range and diet of range of bobcat in south Alabama. Proceedings of the Bob- bobcats in eastern Tennessee. Bobcat Research Conference Research Conference. National Wildlife Federation Sci- Proceedings: current research on biology and management entific and Technical Series 6, Front Royal, Virginia, USA. 70 TEWES ET AL.

Mills, J. K. 1984. Food habits of bobcats, Lynx rufus, in Nova Rolley, R. E., and W. D. Warde. 1985. Bobcat habitat use in Scotia. Canadian Field-Naturalist 98:50Ð51. southeastern Oklahoma. Journal of Wildlife Management National Geographic Society. 1987. Field guide to the birds of 49:913Ð920. North America. The National Geographic Society, Wash- Rollings, C. T. 1945. Habits, foods and parasites of the bobcat ington, D.C. in Minnesota. Journal of Wildlife Management 9:131Ð145. Nussbaum, R. A., and C. Maser. 1975. Food habits of the bobcat, Story, J. D., W. J. Galbraith, and J. T. Kitchings. 1982. Food Lynx rufus, in the Coast and Cascade ranges of western habits of bobcats in eastern Tennessee. Journal of Tennessee Oregon in relation to present management policies. North- Academy of Science 57:29Ð32. west Science 49:261Ð266. Taylor, J. D., II, L. W. Burger, Jr., S. W. Manley, and L. A. Parker, G. R., and G. E. J. Smith. 1983. Sex- and age-specific Brennan. 2000. Seasonal survival and cause-specific mor- reproductive and physical parameters of the bobcat (Lynx tality of northern bobwhite in Mississippi. Proceedings of the National Quail Symposium 4:103Ð107. rufus) on Cape Breton Island, Nova Scotia. Canadian Jour- Toweill, D. E. 1982. Winter foods of eastern Oregon bobcats. nal of Zoology 61:1771Ð1782. Northwest Science 56:310Ð315. Pollack, E. M. 1951. Food habits of the bobcat in the New Eng- Trevor, J. T., R. W. Seabloom, and S. H. Allen. 1989. Food habits land states. Journal of Wildlife Management 15:209Ð213. in relation to sex and age of bobcats from southwestern Progulske, D. R. 1955. Game utilized as food by the North Dakota. Prairie Naturalist 21:163Ð168. bobcat in the Southern Appalachians. Journal of Wildlife Wassmer, D. A., D. D. Guenther, and J. N. Layne. 1988. Ecology Management 19:249Ð253. of the bobcat in south-central Florida. Bulletin of the Flor- Rolley, R. E. 1985. Dynamics of a harvested bobcat population ida State Museum, Biological Sciences 33:159Ð228. in Oklahoma. Journal of Wildlife Management 49:283Ð292. Westfall, C. Z. 1956. Foods eaten by bobcats in Maine. Journal Rolley, R. E. 1987. Bobcat. Pages 671Ð681 in M. Novak, J. A. of Wildlife Management 20:199Ð200. Baker, M. E. Obbard, and B. Malloch, eds. Wild furbearer Witmer, G. W., and D. S. DeCalesta. 1986. Resource use by management and conservation in North America. Ministry unexploited sympatric bobcats and coyotes in Oregon. Ca- of Natural Resources, Ontario, Canada. nadian Journal of Zoology 64:2333Ð2338.