Neuroscience

Total Page:16

File Type:pdf, Size:1020Kb

Neuroscience NEUROSCIENCE TARGET APPLICATION SPECIES CATALOG TARGET APPLICATION SPECIES CATALOG 5-HT IHC-P 5-HT bs-1126R CNTF IHC-P, IF(IHC-P) Hu, Ms, Rt bs-1272R 5HT3B receptor WB, IHC-P Hu, Ms, Rt bs-4289R CNTF Receptor alpha IHC-P, ICC Hu, Ms, Rt bs-1516R 5-HTR1A WB, IHC-P Hu, Ms, Rt bs-1124R CRF IHC-P, IF(IHC-P) Hu, Ms, Rt bs-0382R 5-HTR2A WB, IHC-P Hu, Ms, Rt bs-1056R CRHR2 IHC-P Hu, Ms, Rt bs-2792R 5-HTR3/HTR3A IHC-P Hu, Ms, Rt bs-2126R CRLR/CGRPR1 WB, IHC-P, IF(IHC-P) Hu, Ms, Rt bs-1860R ADAM17 Hu, Ms, Rt bs-4236R Cyclin E WB, IHC-P, IF(IHC-P), FCM Ms, Rt bs-0573R ADM IHC-P Hu, Rt bs-0007R Cytochrome C WB, IHC-P, ICC, IF(IHC-P) Hu, Ms, Rt bs-0013R ADM2 IHC-P Hu, Ms, Rt bs-2985R DOPA Decarboxylase IHC-P, IHC-F Hu, Ms, Rt bs-0180R Alpha-Synuclein IHC-P, ICC, IF(IHC-P) Hu, Ms, Rt bs-0968R DRD1 WB, IHC-P Hu, Ms, Rt bs-1007R Amphiregulin IHC-P, IF(IHC-P) Hu, Ms, Rt bs-3847R DRD2 WB, IHC-P Hu, Ms, Rt bs-1008R Amyloid Precursor Protein IHC-P, E Hu, Ms, Rt bs-0112R DRD5 WB, IHC-P Hu, Ms, Rt bs-1747R APAF1 IHC-P Hu, Ms, Rt bs-0058R EAAT1 WB, IHC-P Hu, Ms, Rt bs-1003R APH1a IHC-P, IF(IHC-P) Hu, Ms, Rt bs-4259R EAAT2 IHC-P Hu, Ms,Rt bs-1751R APOE WB, IHC-P Ms, Rt bs-0167R FADD WB Hu, Ms, Rt bs-0511R Artemin IHC-P Hu, Ms, Rt bs-0055R FRS2 (Tyr436) IHC-P Hu, Ms, Rt bs-7902R ATX2 IHC-P, IF(IHC-P) Hu, Ms, Rt bs-7974R GABA IHC-P, IF(IHC-P) GABA bs-2252R BDNF WB, IHC-P Hu, Ms, Rt bs-4989R GABA A Receptor gamma 2 WB, IHC-P Hu, Ms, Rt bs-4112R beta Actin WB, ICC Hu, Ms, Rt, Bv, Pg bs-0061R GABABR1 IHC-P Hu, Ms, Rt bs-0533R beta-Amyloid 1-42 WB, IHC-P, IHC-F, E Hu, Ms, Rt bs-0107R GALR2 WB, IHC-P, FCM Hu, Ms, Rt bs-11527R beta-Amyloid 1-42 WB, IHC-P Hu, Rt bs-0076M gamma Synuclein IHC-P Hu, Ms, Rt bs-0622R bFGF WB, IHC-P, ICC, FCM Hu, Ms, Rt, Gp bs-0217R GAP43 WB, IHC-P Hu, Ms, Rt bs-0154R BNP WB, IHC-P, IF(IHC-P) Ms, Rt bs-2207R GARB1 IHC-P Hu, Ms, Rt bs-3766R Calpain 1 IHC-P, ICC Hu,Ms, Rt bs-1099R Gastrin receptor/CCKBR IHC-P Hu, Ms, Rt bs-1777R CAP1/PARK7 WB, IHC-P, FCM Hu, Ms, Rt bs-1306R GDNF WB, IHC-P Hu, Ms, Rt bs-1024R Caspase 3 WB, IHC-P, ICC, FCM Hu, Ms, Rt, Bv, Gt bs-0081R GDNF Receptor alpha 2 IHC-P, IF(IHC-P) Hu, Ms, Rt bs-0054R Caspase 8 WB, IHC-P, ICC Hu, Ms, Rt bs-0052R GFAP IHC-P, IF(IHC-P), ICC Hu, Ms, Rt bs-0199R Caspase 9 WB, IHC-P, IF(IHC-P), FCM Hu, Ms, Rt, Dg bs-0049R GFAP (Ser8) WB, IHC-P Hu, Ms, Rt bs-5355R CD40L/CD154 FCM Hu, Ms, Rt bs-1286R GLUR3 IHC-P Hu, Ms, Rt bs-1799R CD200 IHC-P Hu, Ms, Rt bs-6030R GPRIN1 IHC-P Hu bs-8275R CD200R IHC-P Hu bs-10521R Group I mGLUR WB, IHC-P, FCM Hu, Ms, Rt bs-1803R CDK5 WB, IHC-P, IF(IHC-P) Hu, Ms, Rt bs-0559R GSK-3 Beta WB, IHC-P, ICC Hu, Ms, Rt bs-0028R CHIP IHC-P Hu, Ms, Rt bs-15405R HSP70 WB, IHC-P, IF(IHC-P) Hu, Ms, Rt bs-0126R CNR1/CB1 IHC-P Hu, Ms, Rt bs-1683R LGI1 WB, IHC-P Hu, Ms, Rt bs-6719R WB - Western Blot | IHC-P - Immunohistochemistry Paraffin | IHC-F - Immunohistochemistry Frozen | ICC - Immunocytochemistry | IF - Immunofluorescence | E - Enzyme Linked Immunosorbent Assay | FCM - Flow Cytometry | Bv - Bovine | Ch - Chicken | Dg - Dog | Gt - Goat | Gp - Guinea pig | Hu - Human | Ms - Mouse | Pg - Pig | Rt - Rat www.stratech.co.uk/bioss [email protected] GSK3 beta | bs-0028R Caspase 8 | bs-0052R CRF | bs-0382R GFAP | bs-0199R IF (ICC) | Human A549 cells WB | Human Hela cells IF (IHC-P)TARGET | Rat kidney APPLICATIONIHC-P |SPECIES Rat brain CATALOG TARGET APPLICATION SPECIES CATALOG TARGET APPLICATION SPECIES CATALOG MAG IHC-P Hu, Ms, Rt bs-0257R NPY2R IHC-P Hu, Ms, Rt bs-0937R MBP WB, IHC-P, IHC-F, ICC, IF(IHC-P) Hu, Ms, Rt bs-0380R Nur77 IHC-P Hu, Ms, Rt bs-3513R MBP (Thr232) IHC-P Hu, Ms, Rt bs-5474R Oxytocin R IHC-P Hu, Ms, Rt bs-1314R Merlin (Ser518) IHC-P Hu, Ms, Rt bs-3291R p75 NGF Receptor WB, IHC-P, ICC, IF(IHC-P) Hu, Ms, Rt bs-0161R Metabotropic glutamate Receptor 2 IHC-P Hu, Ms, Rt bs-1161R Parkin protein/PARK2 WB, IHC-P Hu, Ms, Rt bs-1865R Metallothionein 3 IHC-P Hu, Ms, Rt bs-4940R PEN2 IHC-P, IF(IHC-P) Hu, Ms, Rt bs-6456R mGluR5 IHC-P, IF(IHC-P) Hu, Ms, Rt bs-1247R Peroxiredoxin 1 WB, IHC-P, ICC Hu, Ms, Rt bsm-52127R MOBP IHC-P Hu, Ms, Rt bs-11184R Peroxiredoxin 2 WB Hu, Ms, Rt bsm-52128R MOG WB Hu, Ms, Rt bs-0426R PMP22 IHC-P Hu, Ms, Rt bs-0235R MRF/C11orf9 WB, IHC-P Hu, Ms, Rt bs-11191R PSD95 WB, IHC-P Hu, Ms, Rt bs-0179R mTOR WB, IHC-P, IF(IHC-P) Hu, Ms, Rt bs-1992R ProSAPiP1 IHC-P Hu, Ms, Rt bs-11198R mTOR (Ser2448) WB, IHC-P Hu, Ms, Rt bs-3494R Prostaglandin E Receptor EP2 WB, IHC-P, FCM Hu, Ms, Rt bs-4196R Myelin PLP IHC-P Hu, Ms, Rt bs-11093R SLC6A4/5-HTT WB, IHC-P, IF(IHC-P) Hu, Ms, Rt bs-1893R Myelin Protein Zero IHC-P, IF(IHC-P) Hu, Ms, Rt bs-0337R SLC22A17 WB, IHC-P Hu, Ms, Rt bs-0444R Neurokinin 1 Receptor WB, IHC-P, IF(IHC-P) Hu, Ms, Rt bs-0064R SNAP25 WB , IHC-P, IHC-F, IF(IHC-P) Hu, Ms, Rt bs-1131R Neurokinin A IHC-P, IF(IHC-P) Hu, Ms, Rt bs-0069R SSTR2 WB, IHC-P Hu, Ms, Rt bs-1138R Neurokinin A Receptor WB, IHC-P Hu, Ms, Rt bs-0123R Substance P WB, IHC-P, IHC-F Hu, Ms, Rt bs-0065R Neurokinin B Receptor WB, IHC-P Hu, Ms, Rt bs-0166R SV2A IHC-P Hu, Ms, Rt bs-2407R Neuropeptide Y IHC-P Hu, Ms, Rt bs-0071R Synapsin 1 IHC-P, IF(IHC-P) Hu, Ms, Rt bs-3501R Neurotrophin 3 IHC-P Hu, Ms, Rt bs-0160R Synaptotagmin 1 WB, IHC-P Hu, Ms, Rt bs-4172R Neurotrophin 4 WB, IHC-P Hu, Ms, Rt bs-0158R Synphilin-1 WB, IHC-P Hu, Ms, Rt bs-1905R Neurofibromin 2/NF2 IHC-P Hu, Ms, Rt bs-1366R Tau protein IHC-P Hu, Ms, Rt bs-0419R NF-H IHC-P Hu, Ms, Rt bs-10680R TNF alpha WB, IHC-P, IHC-F, IF(IHC-P) Hu, Ms, Rt bs-2081R NGFR IHC-P, FCM Hu, Ms, Rt bs-7122R TNF alpha IHC-P, IF(IHC-P) Hu bsm-0387M Nicastrin IHC-P, IF(IHC-P) Hu, Ms, Rt bs-6058R TNFR1 WB, IHC-P, IF(IHC-P) Hu, Ms, Rt bs-2941R NKB IHC-P, IF(IHC-P) Hu, Ms, Rt bs-0070R TNFRSF5 IHC-P, IF(IHC-P) Hu, Ms, Rt bs-2929R NMDAR1 (Ser890) IHC-P, IF(IHC-P) Hu, Ms, Rt bs-3301R TrkB WB, IHC-P, FCM Hu, Ms, Rt bs-0175R NMDAR2A WB, IHC-P, IF(IHC-P) Hu, Ms, Rt bs-3507R Tyrosine Hydroxylase WB, IHC-P, FCM Hu, Ms, Rt bs-0016R NMDAR2B WB, IHC-P, IF(IHC-P) Hu, Ms, Rt bs-3307R Tyrosine Kinase IHC-P Hu, Ms, Rt bs-0192R NMDAR2B (Tyr1252) IHC-P, IF(IHC-P) Hu, Ms, Rt bs-5380R UCHL1/PGP9.5 IHC-P, IF(IHC-P) Hu, Ms, Rt bs-3806R nNos IHC-P Hu, Ms, Rt bs-0156R Versican IHC-P Hu, Ms, Rt bs-2533R Nociceptin WB, IHC-P Hu, Ms, Rt bs-0075R Vimentin WB, IHC-P, ICC Hu, Ms, Rt, Pg bs-0756R Nociceptin Receptor WB, IHC-P, IF(IHC-P) Hu, Ms, Rt bs-0181R Wnt8b WB, IHC-P Hu, Ms, Rt bs-6245R NPY1R IHC-P, IF(IHC-P) Hu, Ms, Rt bs-1070R ZNF231 IHC-P Hu, Ms, Rt bs-0275R 1.800.501.7654 | biossusa.com | [email protected] v. 3 - 062017 www.stratech.co.uk/bioss [email protected].
Recommended publications
  • BBC Program 2016.Pages
    March 5-6, 2016 La Quinta Inn & Suites Medical Center San Antonio, TX Behavior, Biology, and Chemistry: Translational Research in Addiction BBC 2016 BBC Publications BBC 2011 Stockton Jr SD and Devi LA (2012) Functional relevance of μ–δ opioid receptor heteromerization: A Role in novel signaling and implications for the treatment of addiction disorders: From a symposium on new concepts in mu-opioid pharmacology. Drug and Alcohol Dependence Mar 1;121(3):167-72. doi: 10.1016/j.drugalcdep.2011.10.025. Epub 2011 Nov 23 Traynor J (2012) μ-Opioid receptors and regulators of G protein signaling (RGS) proteins: From a sym- posium on new concepts in mu-opioid pharmacology. Drug and Alcohol Dependence Mar 1;121(3): 173-80. doi: 10.1016/j.drugalcdep.2011.10.027. Epub 2011 Nov 29 Lamb K, Tidgewell K, Simpson DS, Bohn LM and Prisinzano TE (2012) Antinociceptive effects of herkinorin, a MOP receptor agonist derived from salvinorin A in the formalin test in rats: New concepts in mu opioid receptor pharmacology: From a symposium on new concepts in mu-opioid pharma- cology. Drug and Alcohol Dependence Mar 1;121(3):181-8. doi: 10.1016/j.drugalcdep.2011.10.026. Epub 2011 Nov 26 Whistler JL (2012) Examining the role of mu opioid receptor endocytosis in the beneficial and side-ef- fects of prolonged opioid use: From a symposium on new concepts in mu-opioid pharmacology. Drug and Alcohol Dependence Mar 1;121(3):189-204. doi: 10.1016/j.drugalcdep.2011.10.031. Epub 2012 Jan 9 BBC 2012 Zorrilla EP, Heilig M, de Wit, H and Shaham Y (2013) Behavioral, biological, and chemical perspectives on targeting CRF1 receptor antagonists to treat alcoholism.
    [Show full text]
  • In the IUPHAR/BPS Guide to Pharmacology Database
    IUPHAR/BPS Guide to Pharmacology CITE https://doi.org/10.2218/gtopdb/F16/2019.4 Class A Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database Stephen P.H. Alexander1, Jim Battey2, Helen E. Benson3, Richard V. Benya4, Tom I. Bonner5, Anthony P. Davenport6, Satoru Eguchi7, Anthony Harmar3, Nick Holliday1, Robert T. Jensen2, Sadashiva Karnik8, Evi Kostenis9, Wen Chiy Liew3, Amy E. Monaghan3, Chido Mpamhanga10, Richard Neubig11, Adam J. Pawson3, Jean-Philippe Pin12, Joanna L. Sharman3, Michael Spedding13, Eliot Spindel14, Leigh Stoddart15, Laura Storjohann16, Walter G. Thomas17, Kalyan Tirupula8 and Patrick Vanderheyden18 1. University of Nottingham, UK 2. National Institutes of Health, USA 3. University of Edinburgh, UK 4. University of Illinois at Chicago, USA 5. National Institute of Mental Health, USA 6. University of Cambridge, UK 7. Temple University, USA 8. Cleveland Clinic Lerner Research Institute, USA 9. University of Bonn, Germany 10. LifeArc, UK 11. Michigan State University, USA 12. Université de Montpellier, France 13. Spedding Research Solutions SARL, France 14. Oregon Health & Science University, USA 15. University of Glasgow, UK 16. University of Utah, USA 17. University of Queensland, Australia 18. Vrije Universiteit Brussel, Belgium Abstract Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [191], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [148]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.
    [Show full text]
  • Cayman Pain Research
    Pain Research The development of novel pain therapeutics relies on understanding the highly complex nociceptive signaling pathways. Cayman offers a select group of tools to study TRP ion channels, purinergic receptors, voltage-gated ion channels, and various G protein-coupled receptors (GPCRs) that are known to be expressed by nociceptive primary afferent nerves. Modulators of glutamate, GABA, and nicotinic acetylcholine receptors are also available. Pain Signal Pain Transmission Primary nociceptor afferents release neurotransmitters such as glutamate and prostaglandins, which bind to specific Glutamate, prostaglandins, etc. receptors on the postsynaptic membrane to transmit a pain signal. 2+ glutamate Ca prostaglandins cannabinoids opioids The antinociceptive response includes Mg2+ EP1 AMPA NMDA inhibitory interneurons, signaling via GABA CB OP receptors, that activate μ-opioid receptors, + Na Ca2+ among others. + 2+ 5-HT K Ca Action potentials Na+ GABA Inhibitory Inhibitory pathways descending from interneuron the brainstem release neurotransmitters Descending neuron from such as serotonin (5-HT) or activate small brainstem opioid-containing interneurons in the spinal dorsal horn to release opioid peptides. Pain Signal Image adapted from: Olesen, A.E., Andresen, T., Staahl, C., et al. Pharmacol. Rev. 64(3), 722-779 (2012). Ligand-Gated Ion Channels TRP Ion Channel Agonists and Antagonists Item No. Product Name Summary A competitive antagonist of capsaicin activation of TRPV1 (IC s = 24.5 and 85.6 nM for human 14715 AMG 9810 50 and rat,
    [Show full text]
  • Altered Expression of Itch‑Related Mediators in the Lower Cervical Spinal Cord in Mouse Models of Two Types of Chronic Itch
    INTERNATIONAL JOURNAL OF MOleCular meDICine 44: 835-846, 2019 Altered expression of itch‑related mediators in the lower cervical spinal cord in mouse models of two types of chronic itch BAO-WEN LIU, ZHI-XIAO LI, ZHI-GANG HE, QIAN WANG, CHENG LIU, XIAN-WEI ZHANG, HUI YANG and HONG-BING XIANG Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China Received March 2, 2019; Accepted June 13, 2019 DOI: 10.3892/ijmm.2019.4253 Abstract. In this study, we focused on several itch-related itchy skin, as its pathophysiological mechanisms remain molecules and receptors in the spinal cord with the goal of elusive (2‑5). Similar to many other diseases, itch manifests clarifying the specific mediators that regulate itch sensa- in two forms. Acute itch is relieved easily by scratching, while tion. We investigated the involvement of serotonin receptors, chronic itch, which is further categorized according to derma- opioid receptors, glia cell markers and chemokines (ligands tological, systemic, neuropathic and psychogenic subtypes and receptors) in models of acetone/ether/water (AEW)- and based on clinical relevance, remains a challenge to cure (6). diphenylcyclopropenone (DCP)-induced chronic itch. Using Although Sun and Chen indicated gastrin‑releasing peptide reverse transcription-quantitative polymerase chain reaction, receptor (GRPR) as the first dedicated molecule that mediates we examined the expression profiles of these mediators in the pruritus, the itch pathogenesis remains unclear (7). lower cervical spinal cord (C5-8) of two models of chronic itch. According to a number of studies, pruritus and pain are two We found that the gene expression levels of opioid receptor fundamental sensory perceptions that share close associations in mu 1 (Oprm1), 5-hydroxytryptamine receptor 1A (Htr1a) and neural pathways (8-10).
    [Show full text]
  • Enhanced Spinal Nociceptin Receptor Expression Develops Morphine Tolerance and Dependence
    The Journal of Neuroscience, October 15, 2000, 20(20):7640–7647 Enhanced Spinal Nociceptin Receptor Expression Develops Morphine Tolerance and Dependence Hiroshi Ueda,1 Makoto Inoue,1 Hiroshi Takeshima,2 and Yoshikazu Iwasawa3 1Department of Molecular Pharmacology and Neuroscience, Nagasaki University School of Pharmaceutical Sciences, Nagasaki 852–8521, Japan, 2Department of Pharmacology, Faculty of Medicine, The University of Tokyo, Tokyo 113–0033, Japan, and 3Banyu Tsukuba Research Institute, 3 Okubo Tsukuba, 300–2611, Japan The tolerance and dependence after chronic medication with phine treatments. Similar marked attenuation of morphine toler- morphine are thought to be representative models for studying ance was also observed by single subcutaneous (10 mg/kg) or the plasticity, including the remodeling of neuronal networks. To intrathecal (1 nmol) injection of J-113397, which had been given test the hypothesis that changes in neuronal plasticity observed 60 min before the test in morphine-treated ddY mice. However, in opioid tolerance or dependence are derived from increased the intracerebroventricular injection (up to 3 nmol) did not affect activity of the anti-opioid nociceptin system, the effects of the tolerance. On the other hand, morphine dependence was chronic treatments with morphine were examined using nocicep- markedly attenuated by J-113397 that had been subcutaneously tin receptor knock-out (NOR Ϫ/Ϫ) mice and a novel nonpeptidic given 60 min before naloxone challenge. There was also ob- NOR antagonist, J-113397, which shows a specific and potent served a parallel enhancement of NOR gene expression only in NOR antagonist activity in in vitro [ 35S]GTP␥S binding assay the spinal cord during chronic morphine treatments.
    [Show full text]
  • Hypocretin/Orexin and Nociceptin/Orphanin FQ Coordinately Regulate Analgesia in a Mouse Model of Stress-Induced Analgesia Xinmin Xie,1,2 Jonathan P
    Research article Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia Xinmin Xie,1,2 Jonathan P. Wisor,1 Junko Hara,1 Tara L. Crowder,1 Robin LeWinter,1 Taline V. Khroyan,3 Akihiro Yamanaka,4 Sabrina Diano,5 Tamas L. Horvath,5,6 Takeshi Sakurai,4 Lawrence Toll,1 and Thomas S. Kilduff1 1Biosciences Division, SRI International, Menlo Park, California, USA. 2AfaSci Inc., Burlingame, California, USA. 3Center for Health Sciences, SRI International, Menlo Park, California, USA. 4Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan. 5Department of Obstetrics, Gynecology & Reproductive Sciences and Department of Neurobiology and 6Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA. Stress-induced analgesia (SIA) is a key component of the defensive behavioral “fight-or-flight” response. Although the neural substrates of SIA are incompletely understood, previous studies have implicated the hypocretin/orexin (Hcrt) and nociceptin/orphanin FQ (N/OFQ) peptidergic systems in the regulation of SIA. Using immunohistochemistry in brain tissue from wild-type mice, we identified N/OFQ-containing fibers forming synaptic contacts with Hcrt neurons at both the light and electron microscopic levels. Patch clamp recordings in GFP-tagged mouse Hcrt neurons revealed that N/OFQ hyperpolarized, decreased input resis- tance, and blocked the firing of action potentials in Hcrt neurons. N/OFQ postsynaptic effects were consistent with opening of a G protein–regulated inwardly rectifying K+ (GIRK) channel. N/OFQ also modulated presyn- aptic release of GABA and glutamate onto Hcrt neurons in mouse hypothalamic slices. Orexin/ataxin-3 mice, in which the Hcrt neurons degenerate, did not exhibit SIA, although analgesia was induced by i.c.v.
    [Show full text]
  • Neuroscience
    NEUROSCIENCE TARGET APPLICATION SPECIES CATALOG TARGET APPLICATION SPECIES CATALOG 5-HT IHC-P 5-HT bs-1126R CNR1/CB1 IHC-P Hu, Ms, Rt bs-1683R 5-HTR1A IHC-P Hu, Ms, Rt bs-1124R CNTF IHC-P, IF(IHC-P) Hu, Ms, Rt bs-1272R 5-HTR2A WB, IHC-P Hu, Ms, Rt bs-1056R CNTF Receptor alpha IHC-P, ICC Hu, Ms, Rt bs-1516R 5-HTR2B/HTR2B IHC-P Hu, Ms, Rt bs-1892R CRF IHC-P, IF(IHC-P) Hu, Ms, Rt bs-0382R 5-HTR3/HTR3A IHC-P Hu, Ms, Rt bs-2126R CRHR2 IHC-P Hu, Ms, Rt bs-2792R 5HT3B receptor IHC-P Hu, Ms, Rt bs-4289R CRLR/CGRPR1 WB, IHC-P, IF(IHC-P) Hu, Ms, Rt bs-1860R ADAM17 WB, IHC-P Hu, Ms, Rt bs-4236R Cyclin E WB, IHC-P, IF(IHC-P), FCM Ms, Rt bs-0573R ADM IHC-P Hu, Rt bs-0007R Cytochrome C WB, IHC-P, ICC, IF(IHC-P) Hu, Ms, Rt bs-0013R ADM2 IHC-P Hu, Ms, Rt bs-2985R DOPA Decarboxylase IHC-P, IHC-F Hu, Ms, Rt bs-0180R Alpha-Synuclein IHC-P, ICC, IF(IHC-P) Hu, Ms, Rt bs-0968R DRD1 WB, IHC-P Hu, Ms, Rt bs-1007R Amphiregulin IHC-P, IF(IHC-P) Hu, Ms, Rt bs-3847R DRD2 WB, IHC-P Hu, Ms, Rt bs-1008R Amyloid Precursor Protein IHC-P, E Hu, Ms, Rt bs-0112R DRD5 WB, IHC-P Hu, Ms, Rt bs-1747R APAF1 IHC-P Hu, Ms, Rt bs-0058R EAAT1 WB, IHC-P Hu, Ms, Rt bs-1003R APH1a IHC-P, IF(IHC-P) Hu, Ms, Rt bs-4259R EAAT2 IHC-P Hu, Ms,Rt bs-1751R APOE WB, IHC-P Ms, Rt bs-0167R FADD WB Hu, Ms, Rt bs-0511R Artemin IHC-P Hu, Ms, Rt bs-0055R FRS2 (Tyr436) IHC-P Hu, Ms, Rt bs-7902R ATX2 IHC-P, IF(IHC-P) Hu, Ms, Rt bs-7974R GABA IHC-P GABA bs-2252R BDNF WB, IHC-P Hu, Ms, Rt bs-4989R GABA A Receptor gamma 2 WB, IHC-P Hu, Ms, Rt bs-4112R beta Actin WB, ICC Hu, Ms, Rt, Bv, Pg bs-0061R GABABR1
    [Show full text]
  • Opioid/Nociceptin Peptide-Based Hybrid KGNOP1 in Inflammatory Pain Without Rewarding Effects in Mice: an Experimental Assessment and Molecular Docking
    molecules Article Antinociceptive Efficacy of the µ-Opioid/Nociceptin Peptide-Based Hybrid KGNOP1 in Inflammatory Pain without Rewarding Effects in Mice: An Experimental Assessment and Molecular Docking Maria Dumitrascuta 1, Marcel Bermudez 2 , Olga Trovato 1, Jolien De Neve 3, Steven Ballet 3, Gerhard Wolber 2 and Mariana Spetea 1,* 1 Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; [email protected] (M.D.); [email protected] (O.T.) 2 Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; [email protected] (M.B.); [email protected] (G.W.) 3 Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; [email protected] (J.D.N.); [email protected] (S.B.) * Correspondence: [email protected]; Tel.: +43-512-50758277 Citation: Dumitrascuta, M.; Abstract: Opioids are the most effective analgesics, with most clinically available opioids being Bermudez, M.; Trovato, O.; De Neve, agonists to the µ-opioid receptor (MOR). The MOR is also responsible for their unwanted effects, J.; Ballet, S.; Wolber, G.; Spetea, M. including reward and opioid misuse leading to the current public health crisis. The imperative need Antinociceptive Efficacy of the for safer, non-addictive pain therapies drives the search for novel leads and new
    [Show full text]
  • The Prolactin-Releasing Peptide Antagonizes the Opioid System Through Its Receptor GPR10
    ARTICLES The prolactin-releasing peptide antagonizes the opioid system through its receptor GPR10 Patrick Laurent1,4, Jerome A J Becker1,4, Olga Valverde2, Catherine Ledent1, Alban de Kerchove d’Exaerde3, Serge N Schiffmann3, Rafael Maldonado2, Gilbert Vassart1 & Marc Parmentier1 Prolactin-releasing peptide (PrRP) and its receptor G protein–coupled receptor 10 (GPR10) are expressed in brain areas involved in the processing of nociceptive signals. We investigated the role of this new neuropeptidergic system in GPR10-knockout mice. These mice had higher nociceptive thresholds and stronger stress-induced analgesia than wild-type mice, differences that were suppressed by naloxone treatment. In addition, potentiation of morphine-induced antinociception and reduction of morphine tolerance were observed in mutants. Intracerebroventricular administration of PrRP in wild-type mice promoted hyperalgesia and reversed morphine-induced antinociception. PrRP administration had no effect on GPR10-mutant mice, showing that its effects http://www.nature.com/natureneuroscience are mediated by GPR10. Anti-opioid effects of neuropeptide FF were found to require a functional PrRP-GPR10 system. Finally, GPR10 deficiency enhanced the acquisition of morphine-induced conditioned place preference and decreased the severity of naloxone-precipitated morphine withdrawal syndrome. Altogether, our data identify the PrRP-GPR10 system as a new and potent negative modulator of the opioid system. Opiate drugs, the prototype of which is morphine, are used largely for behavior11, blood pressure12 and neuroendocrine processes, such as the treatment of severe pain. However, the prolonged use of opiate corticotropin-releasing hormone (CRH)13 and oxytocin14 release. drugs induces a behavioral adaptation that results in the development In addition, recent observations suggest that PrRP and GPR10 are of tolerance and dependence1.
    [Show full text]
  • Allosteric Modulation of the Mu Opioid Receptor
    ALLOSTERIC MODULATION OF THE MU OPIOID RECEPTOR by Kathryn Elsa Livingston A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Pharmacology) in The University of Michigan 2016 Doctoral Committee: Professor John R. Traynor, Chair Professor Margaret E. Gnegy Associate Professor Georgios Skiniotis Professor John J. G. Tesmer © Kathryn Elsa Livingston 2016 Acknowledgements First, I would like to thank Dr. John Traynor. He has been an immensely supportive mentor who has always taken an interest in my development as a scientist and student. I am grateful for his patience, wisdom, and trust. Secondly, I wish to thank the additional members of my thesis committee: Drs. Margaret Gnegy, Georgios Skiniotis, and John Tesmer who have provided valuable comments and insight into my project. Nest, I would like to thank all of the members of the Traynor laboratory, both past and present, including Aaron Chadderdon, Chao Gao, Abigail Fenton, Nicholas Griggs, James Hallahan, Dr. Todd Hillhouse, Dr. Jennifer Lamberts, Claire Meurice, Dr. Lauren Purington, Evan Schramm, Nicolas Senese, Alex Stanczyk, Omayra Vargas-Morales, Dr. Qin Wang, and Wyatt Wells. They have all made the lab a wonderful, vibrant environment. I would also like to thank the various colleagues and collaborators for their contributions to this thesis. From the University of Michigan, I would like to thank Dr. Emily Jutkiewicz and her laboratory for helpful discussions and suggestions, Drs. Yoichi Osawa and Jorge Iñiguez- Lluhi for use of laboratory equipment, the Center for Chemical Genomics and the staff for help using the OctetRed®, and Jacob Mahoney for purification of proteins and help in establishing the interformetry technique in the rHDL system for use in Chapter 5.
    [Show full text]
  • Ascept-Mpgpcr
    ASCEPT-MPGPCR JOINT SCIENTIFIC MEETING Melbourne Convention & Exhibition Centre 7–11 December 2014 www.ascept-mpgpcr2014.com ORAL ABSTRACTS ASCEPT-MPGPCR JOINT SCIENTIFIC MEETING 101 Therapeutic agents and drug targets: GPCRs and beyond, opportunities and challenges. Daniel Hoyer, PhD, DSc, FBPharmacolS, Department of Pharmacology and Therapeutics, School of Medicine, FMDHS, The University of Melbourne, Parkville, Victoria 3010, Australia, [email protected] About half of modern drugs target GPCRs, although the trend decreases since the completion of the human genome project and with the almost endless possibilities offered by biologics. Monoclonal antibodies targeting proteins/enzymes, are on the rise, if only because of perceived limited chemical space and lack of selectivity for low molecular weight (LMW) compounds. Although orthosteric binding pockets of GPCRs are conserved across receptors families (see glutamate receptors), the structural and functional knowledge of GPCRs is increasing dramatically: thus, the availability of GPCR-ligand crystals enables the design of more selective LMW ligands. Many GPCRs have allosteric sites which are much less conserved across / within receptor families, paving the way for more selective allosteric / bitopic modulators. Even the orthosteric space offers great opportunities, especially when taking into account G-Protein-dependent versus -independent receptor modulation, receptor interaction with different G-proteins, or RAMPs interacting with calcitonin (like) receptors, all resulting in multiple conformations of the same receptor ligand complex. Constitutive activity may vary with pathological state, this expands the field of application for both agonists and inverse agonists. The main challenge is to identify translational models relevant to human disease, since receptors do signal differently in different cellular backgrounds and pathologies (e.g.
    [Show full text]
  • Hormone Induced Migraine and Attempts at Blocking Opiate Reward Through Nk1
    Hormone Induced "Migraine" and Attempts at Blocking Opiate Reward through NK1 Item Type text; Electronic Dissertation Authors Skinner, David P. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 05:59:45 Link to Item http://hdl.handle.net/10150/321547 HORMONE INDUCED MIGRAINE AND ATTEMPTS AT BLOCKING OPIATE REWARD THROUGH NK1 David P. Skinner, Jr. ______________________________________ Copyright © David P. Skinner, Jr. 2014 A Dissertation to the Faculty of the DEPARTMENT OF PHARMACOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2014 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by David P. Skinner, Jr. entitled, Hormone Induced “Migraine” and Attempts at Blocking Opiate Reward through NK1 and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _________________________________________________________________________ Date: 05/08/2014 Todd W. Vanderah, Ph.D. _________________________________________________________________________ Date: 05/08/2014 Edward D. French, Ph.D. _________________________________________________________________________ Date: 05/08/2014 John Bloom, M.D. _________________________________________________________________________ Date: 05/08/2014 Victor J. Hruby, Ph.D. Final approval and acceptance of this dissertating is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College.
    [Show full text]