Yellowjackets Rev 8/01
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Yellowjackets Web Brochure
YELLOWJACKETS OF NAPA COUNTY NAPA COUNTY MOSQUITO ABATEMENT DISTRICT P.O. Box 10053 American Canyon, CA 94503 Phone (707) 553-9610 Fax (707) 553-9611 Website: napamosquito.org GENERAL INFORMATION Yellowjackets, commonly referred to as meat bees, are social wasps that live in colonies. They are often confused with bees. They are a more aggressive threat than bees. They do not have barbs on their stingers so they can sting more than once. They can also bite. In Napa County there are three aggressive pest species of yellowjackets. They are the Common yellowjacket (Vespula vulgaris), Western yellowjacket (Vespula pensylvanica), and the German yellowjacket (Vespula germanica). These species build their nests in underground holes, attics, and walls of homes. They can also build nests in rodent burrows, tree cavities or ground holes. When a nest is disturbed yellowjackets can inflict multiple stings that are painful and may be life threatening to individuals hypersensitive to the venom. Unlike honeybees, yellowjackets do not leave a stinger imbedded in the sting site therefore they can sting numerous times. Stinging and injured yellowjackets release a chemical alarm pheromone that attracts other worker yellowjackets. This can cause additional yellowjackets to attack. In the late summer months when yellowjacket populations increase they can create a nuisance in parks by scavenging for food from picnic and barbeque areas. They can cause structural damage to a home when they construct nests in walls or attics. Adults of some species are beneficial to man because they prey on flies and other insects. Yellowjackets use vegetable fibers from trees and shrubs, chewed and mixed with saliva, to produce a paper-like material for nest construction. -
Scientific Notes 193 APPLICATION of ALARM PHEROMONE TO
Scientific Notes 193 APPLICATION OF ALARM PHEROMONE TO TARGETS BY SOUTHERN YELLOWJACKETS (HYMENOPTERA: VESPIDAE) HAL C. REED1 AND PETER J. LANDOLT USDA, ARS, 5230 Konnowac Pass Rd., Wapato, WA 98951, USA 1Current address: Department of Biology, Oral Roberts University, Tulsa, OK 74171 Alarm pheromones have been demonstrated for a number of species of social Vesp- idae including several hornets and yellowjackets (Vespines) (Landolt et al. 1997). Maschwitz (1964a, b) first demonstrated alarm pheromone responses in the yellow- jackets Vespula vulgaris L. and V. germanica (Fab.) in response to crushed wasps and body parts. Pheromone-mediated alarm has since been observed in other vespines: Dolichovespula saxonica (Fab.) (Maschwitz 1984), the southern yellowjacket V. squa- mosa (Drury) (Landolt & Heath 1987, Landolt et al. 1999), the eastern yellowjacket V. maculifrons (Buysson) (Landolt et al. 1995), Provespa anomala Saussure (Maschwitz & Hanel 1988), and Vespa crabro L. (Veith et al. 1984). 2-Methyl-3- butene-2-ol was identified as a component of the alarm pheromone of V. crabro (Veith et al. 1984), and N-3- methylbutylacetamide was isolated and identified as an alarm pheromone of the southern and eastern yellowjackets (Heath & Landolt 1988, Landolt et al. 1995). The source of alarm pheromones in social wasps generally is the venom, although the head is implicated as an additional source of alarm pheromone for V. vulgaris (Al- diss 1983) and V. squamosa (Landolt et al. 1999). Alarm behavior in V. germanica and V. vulgaris occurred in response to the squashed sting apparatus, sting sac, and sol- vent extract of the sting sac (Maschwitz 1964b) and in D. -
Yellowjackets and Hornets, Vespula and Dolichovespula Spp. (Insecta: Hymenoptera: Vespidae)1 E
EENY-081 Yellowjackets and Hornets, Vespula and Dolichovespula spp. (Insecta: Hymenoptera: Vespidae)1 E. E. Grissell and Thomas R. Fasulo2 Introduction Distribution Only two of the 18 Nearctic species of Vespula are known Vespula maculifrons is found in eastern North America, from Florida (Miller 1961). These are the two yellowjackets: while Vespula squamosa is found in the eastern United eastern yellowjacket, V. maculifrons (Buysson) and the States and parts of Mexico and Central America. The southern yellowjacket, V. squamosa (Drury). One species baldfaced hornet, Dolichovespula maculata, is found of Dolichovespula is also present: the baldfaced hornet, throughout most of the Nearctic region. D. maculata (Linnaeus). The baldfaced hornet is actually a yellowjacket. It receives its common name of baldfaced Identification from its largely black color but mostly white face, and that The three species of Florida yellowjackets are readily of hornet because of its large size and aerial nest. In general, separated by differences in body color and pattern. Identi- the term “hornet” is used for species which nest above fication is possible without a hand lens or microscope, and, ground and the term “yellowjacket” for those which make for this reason, a simple pictorial key is all that is necessary. subterranean nests. All species are social, living in colonies Color patterns are relatively stable, and their use is further of hundreds to thousands of individuals. strengthened by morphological characters (Miller 1961). Queens and workers may be separated by abdominal pat- terns; males have seven abdominal segments while females have only six. Biology Colonies are founded in the spring by a single queen that mated the previous fall and overwintered as an adult, usually under the bark of a log. -
The Pest Status of Yellowjackets in Ohio (Hymenoptera: Vespidae)
The Great Lakes Entomologist Volume 21 Number 2 - Summer 1988 Number 2 - Summer Article 7 1988 June 1988 The Pest Status of Yellowjackets in Ohio (Hymenoptera: Vespidae) Kenneth J. Stein Ohio State Unviersity Dana L. Wrensch Ohio State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Stein, Kenneth J. and Wrensch, Dana L. 1988. "The Pest Status of Yellowjackets in Ohio (Hymenoptera: Vespidae)," The Great Lakes Entomologist, vol 21 (2) Available at: https://scholar.valpo.edu/tgle/vol21/iss2/7 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Stein and Wrensch: The Pest Status of Yellowjackets in Ohio (Hymenoptera: Vespidae) 1988 THE GREAT LAKES ENfOMOLOGIST 83 THE PEST STATUS OF YELLOWJACKETS IN omo (HYMENOPTERA: VESPIDAE) Kenneth J. Stein and Dana L. Wrensch' ABSTRACT Since 1975 in Ohio, there has been an escalation in the number of complaints and inquiries regarding yellowjackets (Vespula and Dolichovespula spp.) to the Ohio pest control operators, the Ohio Cooperative Extension Service (OCES) County Agents and the OCES Entomologists at the Ohio State University. A survey was distributed in May 1985 to both groups in order to determine the pest status of yellowjackets in Ohio. The results of this survey strongly suggest that yelIowjackets in Ohio are largely an "economic pest", with most economic disturbances associated with homeowners, outdoor businesses, and outdoor recreational facilities. -
Pesticide-Free Solutions to Yellowjacket Problems
JOURNAL OF PESTICIDE REFORM/ SUMMER 2006 • VOL. 26, NO. 2 A lternatives to just let them be.5 Seasonal Behavior Most yellowjackets die with the first Pesticide-free Solutions frost in the fall. The nest is abandoned and typically not used again. Only the queens find a protected spot to spend to Yellowjacket Problems the winter. In the spring, the queens build new nests and begin laying eggs BY CAROLINE COX which hatch into worker wasps. All summer the number of workers in- creases. By the end of summer there It’s hard to like yellowjackets. They can be thousands of yellowjackets in sting, cause violent allergic reactions in a nest. This is typically when the yel- some people, harass picnickers, and lowjackets are most troublesome.3 have a knack for causing trouble at the wrong time. They seem persistent, clev- Preventing Yellow Jacket er, and difficult to manage. This doesn’t Ken Gray/Oregon State Univ. Problems mean, however, that reaching for a If you’re expecting yellowjacket spray can is a good way to deal with problems, there are some simple steps a yellowjacket problem. Pesticide-free you can take to reduce or eliminate techniques are surprisingly effective. them. If you need convincing that pesti- First, don’t provide these scavengers cides aren’t necessary when coping with pesticide.org/ http://www.pesticide. with food or drink. If you have a meal these feisty wasps, consider what hap- org/BeesWaspsControl.pdf. outside, keep the food and drink cov- pened at the Waterfront Park baseball ered as much as possible. -
Social Bees and Wasps
E-44-W Household and Structural Department of Entomology SOCIAL BEES AND WASPS Timothy J. Gibb, Extension Entomologist Controlling bees and wasps in and around buildings, HONEY BEES IN BUILDINGS parks, and campgrounds may be difficult and possibly haz- ardous. Some people are hypersensitive to bee and wasp Honey bees may build colonies in hollow walls, chim- venom, and many others are greatly afraid of these com- neys, and attics of buildings. Here, they may annoy or at mon insects. Most commercial pest control operators are times sting the residents, and their colonies (unlike other equipped to deal with bees and wasps and can provide ser- social bee and wasp colonies) may be a perennial prob- vice when control is warranted. lem. In addition, the wax combs of the nest may melt and Although all female bees and wasps are capable of allow stored honey to seep through walls and ruin interior stinging (males are harmless), only the social species ag- finishes. Abandoned honeycombs can become infested gressively do so in defense of their colonies. Solitary spe- with scavenger insects or may attract rodent pests which cies rarely sting; typically, only if mishandled. Accordingly, it may enter the home and cause additional annoyance. Ac- is important to be able to distinguish social bees (the honey cordingly, removal and/or destruction of honey bee colonies bee, bumble bees) and social wasps (paper wasps, hornets, in structures is advised, but it should be done with special yellowjackets) from their solitary relatives such as carpenter care. bees, cicada killer, mud daubers, etc. (See E-63 “Solitary Honey bee colonies in structures can be destroyed by Bees and Wasps: Carpenter Bee, Cicada Killer and Mud injecting 5% carbaryl (Sevin) dust (Apicide®) into the en- Daubers”). -
Wasp and Hornet Control
University of Idaho Extension CIS 1218 www.extension.uidaho.edu/idahogardens Wasp and Hornet at a glance Control n Yellowjackets, bald-faced hornets, and paper wasps are social insects. Introduction Hornets, yellowjackets, and paper wasps differ from bees in that their n Most are beneficial bodies are slender, with a narrow waist, and they are mostly hairless and pollinators, predators, and/or shiny. These social insects live in colonies consisting of a single reproductive scavengers. queen and infertile female offspring (workers). All three stinging insects build gray, papery nests from fibers they chew from weathered wood. n They have barbless stingers, and so they can sting multiple Most wasps and hornets prey on other insects and are considered times. beneficial. However, once they congregate around human gathering places, they can become a nuisance. All of these insects are able to inflict multiple, n Yellowjackets most often build nests underground. painful stings with a barbless stinger. n Hornets and paper wasps Yellowjackets build nests above ground, on Four of the eleven yellowjacket species in Idaho pose stinging hazards plants or buildings. justifying control measures. These species are the western yellowjacket, common yellowjacket, German yellowjacket, and aerial yellowjacket n Species identification requires expert examination but is not (figure 1). They readily nest around homes and build their nests under - necessary for taking control ground in abandoned animal burrows or other hollowed-out spaces. measures. Yellowjackets are attracted to honeydew produced by aphid colonies in trees. AUTHORS —Stuart C. Parkinson, Extension Educator, University of Idaho Extension, Franklin County; Danielle Gunn, Extension Educator, University of Idaho Extension, Fort Hall; Edward Bechinski, Extension Entomologist, University of Idaho, Moscow Figure 1. -
Yellow Jackets Will Remain Behind Sects with Black & Yellow Or Black & White Licensed Pest Control Company Or Vector Control to Protect the Nest
sealing all food containers, and locate garbage re- Mud daubers are solitary wasps who construct mud ceptacles away from eating areas. Reduce avail- nests and provision them with paralyzed spiders. Our able water for nest building and drinking, by repair- common two species are medium sized, and ing defective spigots and promote drainage in ar- shiny blue/green or black and yellow. eas where water can accumulate. These insects are non-aggressive and stinging incidents are extremely rare. Depletion Trapping These types of devices will not produce consistent If you discover a yellowjacket nest or reliable results. Some commercially available traps utilize a chemical lure to attract the insect to AVOID THE AREA! the trap. These chemicals attract not all yellow- Þ Mark the site and keep children or pets away from jacket species. Once the insect has entered the the nest. trap, they have difficulty in finding their way out and Þ Wear light colored clothing when nearby. they usually die inside from exposure. Homemade Þ Do not disturb the nest area or operate heavy traps can be constructed by suspending meat over equipment. open containers of soapy water. If the insect cuts Þ Get professional help to exterminate the nest. GENERAL INFORMATION off too large a piece of meat, it will fall into the wa- ter and drown. Traps should be placed away from If you are attacked by yellowjackets people or food. Yellowjackets are social insects that live in a Note: Inexperienced people should not attempt to LEAVE THE AREA QUICKLY! colony. Most species are medium sized in- destroy a yellowjacket nest. -
Yellowjackets, Hornets, and Paper Wasps
Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-19-07 May 2007 Yellowjackets, hornets and paper wasps Erin Hodgson Alan Roe Extension Entomology Specialist Insect Diagnostician What You Should Know • Yellowjackets, hornets and wasps are closely-related social wasps commonly found in Utah. • All social wasps are capable of repeatedly stinging without dying if they feel threatened. • Bees are often blamed for most stings, but about 90% of all stings are likely caused by yellowjackets. • Most social wasps are predatory of other insects and considered beneficial. Fig. 2. Baldfaced hornet.2 • Although providing natural insect control, social wasps can be considered nuisance pests when near humans. Social Wasp General Description • Have three well-separated body regions, a distinct waist and two pairs of clear wings. ocial wasps, including yellowjackets, hornets and paper wasps, are common stinging insects in Utah • Care for their young and develop a caste system with S(Figs. 1, 2). The wasps are related to ants and different forms living together. bees, which are also capable of stinging; however, yellowjackets are the most likely to sting. Less than 1% • Regenerate a new nest every year because only the of people are allergic to wasp or bee stings; however, queen overwinters; honey bee colonies overwinter some people are fatally stung every year. Nearly 80% of together every year. all serious venom-related deaths occur within one hour • Create their nests out of a wood and saliva paste. of the sting. Most people will only experience a mild local reaction with redness, pain, swelling and itching at • Capture prey with their legs and jaws and use stinging the sting site. -
Proceedings of the Seventh Western Black Bear Workshop
PROCEEDINGS OF THE SEVENTH WESTERN BLACK BEAR WORKSHOP 2-5 May 2000 • Coos Bay, Oregon DAVE IMMELL, Editor in Chief Editors: E. CHARLES MESLOW JACK A. MORTENSON DEWAINE H. JACKSON DONALD G. WHITTAKER Sponsored by Central Cascades Black Bear Research Project International Association for Bear Research and Management The Jeff Allen Conservation Fund The Oregon Chapter of The Wildlife Society United States Fish and Wildlife Service The Oregon Department of Fish and Wildlife Suggested citation: Author’s name(s). 2001. Paper title. Western Black Bear Workshop 7:___-___ © 2001 Oregon Department of Fish and Wildlife P.O. Box 59 • Portland, Oregon 97207 ISBN 0-944-740-11-1 Information on how to order additional copies of this volume or other volumes in this series, as well as volumes of Ursus, the official publication of the International Association for Bear Research and Management, may be obtained from the IBA web site: www.bearbiology.com, from the IBA newsletter International Bear News, or from Terry White, Department of Forestry, Wildlife and Fisheries, The University of Tennessee, P.O. Box 1071, Knoxville, TN 37901-1071, USA. TABLE OF CONTENTS Note: The Table of Contents has been formatted to reflect the chronology of the Workshop program. Preface………………………………………………………………………………………………………………………………………...vi ORAL PRESENTATIONS Social Aspects – Bears and People Session Chair: Chuck Meslow THE CHANGING DYNAMICS OF BEAR MANAGEMENT: ARIZONA’S EXPERIENCE WITH LITIGATION FROM A BLACK BEAR MAULING Gerald L. Perry and Michael J. Rusing………………………………………………………………………………………………….…1 NEW ALLIANCE BETWEEN AGENCY AND PUBLIC REDUCES BEAR PROBLEMS Douglas Updike and Robert Malm……………………………………………………………………………………………………….…9 TRENDS IN BLACK BEAR-HUMAN CONFLICTS DURING A 2-DECADE BURGEONING BEAR POPULATION – Abstract David L. -
Microbial Volatile Emissions As Insect Semiochemicals
Microbial Volatile Emissions as Insect Semiochemicals Thomas Seth Davis, Tawni L. Crippen, Richard W. Hofstetter & Jeffery K. Tomberlin Journal of Chemical Ecology ISSN 0098-0331 J Chem Ecol DOI 10.1007/s10886-013-0306-z 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J Chem Ecol DOI 10.1007/s10886-013-0306-z Microbial Volatile Emissions as Insect Semiochemicals Thomas Seth Davis & Tawni L. Crippen & Richard W. Hofstetter & Jeffery K. Tomberlin Received: 9 April 2013 /Revised: 28 May 2013 /Accepted: 4 June 2013 # Springer Science+Business Media New York 2013 Abstract We provide a synthesis of the literature describing are conserved across large taxonomic groupings of microor- biochemical interactions between microorganisms and insects ganisms. In addition, there is substantial functional redundan- by way of microbial volatile organic compound (MVOC) cy in MVOCs: fungal tissues commonly produce polyketides production. -
Sexual Communication in Yellowjackets (Hymenoptera: Vespidae)
Sexual Communication in Yellowjackets (Hymenoptera: Vespidae) by Nathan Derstine B.A., Eastern Mennonite University, 2010 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Biological Sciences Faculty of Science Nathan Derstine 2017 SIMON FRASER UNIVERSITY Spring 2017 Approval Name: Nathan Derstine Degree: Master of Science Title: Sexual Communication in Yellowjackets (Hymenoptera: Vespidae) Examining Committee: Chair: Harold Hutter Professor Gerhard Gries Senior Supervisor Professor Jenny Cory Supervisor Professor Peter Landolt Supervisor Research Entomologist US Department of Agriculture Sheila Fitzpatrick External Examiner Research Entomologist Agriculture and Agri-Food Canada Date Defended/Approved: April 11, 2017 ii Abstract To determine if and how pheromones mediate sexual communication of yellowjackets [Dolichovespula arenaria, D. maculata, Vespula alascensis, V. pensylvanica, V. squamosa], I took three approaches: (1) In field trapping experiments, I baited traps with a virgin queen (gyne) or a male and tested for their ability to attract prospective mates. I found that only gynes of D. arenaria attracted males. (2) In laboratory Y-tube olfactometer experiments with D. arenaria, D. maculata and V. pensylvanica, I used sibling or non- sibling gynes as a test stimulus, and found that only D. maculata gynes attracted conspecific males, provided they were non-siblings. These results imply an olfactory- based mechanism of nestmate recognition and inbreeding avoidance. (3) I tested the hypothesis that cuticular hydrocarbons (CHCs) differentiate sex, caste, and nest membership. I found that each caste had specific CHC profiles. My data demonstrate the diversity and complexity of sexual communication in yellowjacket wasps, and inspire follow-up studies to identify the sex pheromones.