2020: Growth & Resilience in Regenerative Medicine

Total Page:16

File Type:pdf, Size:1020Kb

2020: Growth & Resilience in Regenerative Medicine 2020: Growth & Resilience in Regenerative Medicine 2020 ANNUAL REPORT Table of Contents The Alliance for Regenerative Medicine (ARM) is the leading international advocacy organization dedicated to realizing the promise of regenerative medicines and advanced therapies. ARM promotes legislative, regulatory and reimbursement ARM Annual Report initiatives to advance this innovative and transformative sector, which includes cell therapies, gene therapies and tissue-based therapies. 2 Letter from the CEO 24 ARM Advances Alongside Maturing Sector Early products to market have demonstrated profound, durable and potentially curative benefits that are already helping thousands of patients worldwide, many 4 Investor Perspective 25 Virtual Programming of whom have no other viable treatment options. Hundreds of additional product candidates contribute to a robust pipeline of potentially life-changing regenerative 5 Record Financings Bolster Maturing Sector 26 Capacity Building medicines and advanced therapies. 10 Real Life Miracles: The Price Family 26 What’s Next? In its 11-year history, ARM has become the global voice of the sector, representing the interests of 380+ members worldwide, including small and large companies, 12 academic research institutions, major medical centers and patient groups. The View From Science & Industry Affairs 27 Parting Letter From ARM Chair To learn more about ARM or to become a member, visit www.alliancerm.org. 14 Progressing Through the Pipeline 28 2021 ARM Officers & Board 19 The View From Public Affairs 30 ARM Staff 20 Europe Policy & Regulatory Update 32 Upcoming Events 2021 22 U.S. Policy & Regulatory Update 1 Letter from the CEO: Growth & Resilience hen we issued the Alliance for Regenerative Medicine (ARM) 2019 Annual Report a year Beyond the new approvals, there were extraordinary scientific accomplishments and ago, we never imagined what 2020 would throw at the world, the regenerative medicine recognitions. Jennifer Doudna and Emmanuelle Charpentier won the 2020 Nobel Prize in Wsector, and ARM itself. Chemistry for their discovery of the CRISPR approach to genome editing, a technique that shows clinical promise to durably treat or cure sickle-cell disease, among other applications. We saw The sector’s — and ARM’s — accomplishments in 2020 are all-the-more remarkable amid the an increased focus on, and promising clinical data for, allogeneic cell therapies with growing backdrop of COVID-19. applications of gene-editing approaches. Induced pluripotent stem cells (iPSCs) demonstrated As the pandemic took hold, we planned for retrenchment. Instead, ARM’s membership grew by 81 positive results in the clinic, including from a first-ever application for Parkinson’s disease. organizations in 2020 to exceed 380, cementing our role as the global voice of the sector. We hired ARM and the sector also achieved notable policy milestones. Our advocacy efforts led the five staff members to serve this growing membership, with a focus on operations and advocacy. Centers for Medicare & Medicaid Services (CMS) to create a DRG for CAR-T therapies that will ARM adapted to the virtual world by converting October’s Cell & Gene Meeting on the Mesa to an ensure proper reimbursement for providers. In December, CMS also finalized a rule removing online format. Instead of convening in Carlsbad, California, nearly 1,200 participants joined from barriers to innovative payment models in Medicaid programs, a significant area of focus for ARM their homes. We also launched the Cell & Gene Webinar Series and introduced ARM Connect to and its members. And the EU Pharmaceutical Strategy, a blueprint for a years-long legislative replace canceled in-person meetings. push, recognized cell and gene therapies as “milestones of major progress” in healthcare. As we expand our advocacy work through new hires and resources, ARM will devote even more We responded to the powerful movement for racial equality by recognizing that we needed attention to advancing this maturing sector’s policy goals. to address the underrepresentation of Black employees in the regenerative medicine sector. ARM stepped into action, forming the Action for Equality Task Force which created the GROW The year was not without its setbacks or growing pains, partly a result of fast-moving science RegenMed Internship Program. At least sixteen ARM member organizations will welcome the first and constrained regulator bandwidth due to COVID-19. We saw at least six therapeutic programs class of GROW interns this summer. delayed because of CMC and manufacturing-related reasons, and another four delayed due to FDA requests for additional data. There are also significant market access challenges to This was all possible because the regenerative medicine sector in 2020 raised a record overcome as we work with policymakers to accommodate the paradigm shift that durable, and amount of funding, achieved significant new scientific and clinical milestones, and brought new possibly curative, therapies represent for healthcare systems. groundbreaking therapies to patients. These challenges, however, also signify progress. For a once aspirational sector, the future At the end of 2020, there were nearly 1,100 gene, cell, and tissue-based therapeutic developers is now. We are grateful for the support of our members — therapeutic developers, patient worldwide, an increase of about 100 developers from 2019. These developers raised $19.9 billion advocates, and medical and research institutions — and will continue to work tirelessly to ensure in financing, shattering the previous record of $13.5 billion set in 2018. that patients can access transformative, life-changing therapies. Two new therapies received approval in 2020: Orchard Therapeutics’ Libmeldy, a gene therapy to treat metachromatic leukodystrophy, or MLD, was approved by the European Medicines Agency, while Tecartus from Kite, a Gilead Company, was the first CAR-T treatment approved by the Food & Drug Administration (FDA) for relapsed or refractory mantle cell lymphoma. In February 2021, the FDA approved Breyanzi, a CAR-T therapy from Bristol Myers Squibb, to treat adults with relapsed or refractory large B-Cell lymphoma. Janet Lambert A growing pipeline of new therapies are nearing regulatory decisions, with at least three Chief Executive Officer additional decisions in the U.S. and five in Europe expected in 2021. There were 1,220 clinical Alliance for Regenerative Medicine trials ongoing at the end of 2020, with 152 of those trials in Phase 3 — supporting the FDA’s and EMA’s predictions they will approve 10-20 cell and gene therapies each year by 2025. 2 3 Investor Perspective Record Financings Bolster Maturing Sector 2020 was a pivotal year for regenerative medicine financing and progress, with the pandemic 2020 was a watershed year for the rapidly evolving regenerative medicine and advanced therapy sector. revealing the importance of cell and gene therapies and genetic medicines more broadly. Whether the These innovative therapies are demonstrating profound, durable, and potentially curative therapeutic momentum is sustained in 2021 depends on whether the interest rate environment supports capital benefits for patients with a wide array of disorders — and investors have taken note. flows. Our expectation is that even if the capital markets financing environment diminishes, large biopharma will continue to invest in or acquire disruptive technologies and support valuation. In 2021 The sector raised nearly $20B in 2020, shattering previous records despite the challenges posed by and beyond, we will continue to see investor interest in in vivo gene therapy, gene editing, and cell- the COVID-19 pandemic. The sector even exceeded the previous record of $13.5B, set in 2018, by the based therapies. Manufacturing and associated regulatory delays will continue as a gating factor due to close of the third quarter, when it had raised $15.9B. Individually, many companies were able to secure the inevitable “growing pains” as academic work is translated to production at scale. massive financing rounds, with 50 deals worth more than $100M upfront. For in vivo gene therapy, we expect progress to be driven by success in new target tissues like the heart, immune regimens, gene regulation, non-viral delivery, and synthetic biology. For example, Rocket Pharma showed one of the first gene therapy successes in the heart with positive data in Danon disease, likely driving investment interest in private companies like Tenaya Therapeutics. Total Global Regenerative Medicine Financing On gene regulation, we note MeiraGTx may in 2021 release in vivo preclinical data for its gene regulation platform, a technology that could be used to enable the body as a factory for a range of proven biologics. With non-viral gene therapy, Generation Bio’s move to $2B in valuation is occurring with private companies like enGene still poised to go public. Longer-term, we expect to see investments in synthetic biology, such as transgene engineering. $19.9B For gene editing in 2020, our positive thesis was confirmed, as (1) an ex vivo proof-of-concept emerged from CRISPR Therapeutics/Vertex Pharmaceuticals, and (2) in vivo CRISPR dosing began in Editas Medicine’s and Intellia Therapeutics’ respective trials. For 2021, we anticipate initial in vivo safety and activity data, as well as longer-term follow-up on various ex vivo and CAR-T programs, to continue to drive investor and large biopharma interest. Over the longer-term, we expect active investor interest in in vivo
Recommended publications
  • Tissue-Specific Delivery of CRISPR Therapeutics
    International Journal of Molecular Sciences Review Tissue-Specific Delivery of CRISPR Therapeutics: Strategies and Mechanisms of Non-Viral Vectors Karim Shalaby 1 , Mustapha Aouida 1,* and Omar El-Agnaf 1,2,* 1 Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar; [email protected] 2 Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar * Correspondence: [email protected] (M.A.); [email protected] (O.E.-A.) Received: 12 September 2020; Accepted: 27 September 2020; Published: 5 October 2020 Abstract: The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing system has been the focus of intense research in the last decade due to its superior ability to desirably target and edit DNA sequences. The applicability of the CRISPR-Cas system to in vivo genome editing has acquired substantial credit for a future in vivo gene-based therapeutic. Challenges such as targeting the wrong tissue, undesirable genetic mutations, or immunogenic responses, need to be tackled before CRISPR-Cas systems can be translated for clinical use. Hence, there is an evident gap in the field for a strategy to enhance the specificity of delivery of CRISPR-Cas gene editing systems for in vivo applications. Current approaches using viral vectors do not address these main challenges and, therefore, strategies to develop non-viral delivery systems are being explored. Peptide-based systems represent an attractive approach to developing gene-based therapeutics due to their specificity of targeting, scale-up potential, lack of an immunogenic response and resistance to proteolysis.
    [Show full text]
  • CRISPR THERAPEUTICS AG (Exact Name of Company As Specified in Charter)
    UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C. 20549 FORM 8-K CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 Date of Report (Date of earliest event reported): September 10, 2018 CRISPR THERAPEUTICS AG (Exact Name of Company as Specified in Charter) Switzerland 001-37923 Not Applicable (State or Other Jurisdiction (Commission (IRS Employer of Incorporation) File Number) Identification No.) Baarerstrasse 14 6300 Zug Switzerland +41 (0)41 561 32 77 (Address, Including Zip Code, and Telephone Number, Including Area Code, of Registrant’s Principal Executive Offices) Not applicable (Former Name or Former Address, if Changed Since Last Report) Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions (see General Instruction A.2. below): ☐ Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425) ☐ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12) ☐ Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b)) ☐ Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c)) Indicate by check mark whether the registrant is an emerging growth company as defined in Rule 405 of the Securities Act of 1933 (§230.405 of this chapter) or Rule 12b-2 of the Securities Exchange Act of 1934 (§240.12b-2 of this chapter). Emerging growth company ☒ If an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards provided pursuant to Section 13(a) of the Exchange Act.
    [Show full text]
  • Market Deep Dive Report CRISPR Therapeutics June 2020
    Market Deep Dive Report CRISPR Therapeutics June 2020 Contents 1. Summary 3 2. Market Overview 3 2.1 Industry Challenges 4 2.2 Intellectual Property 5 2.3 Regulatory Requirements 5 2.4 Pitchbook Market Statistics 6 3. Technology Overview 6 3.1 Basic Summary 6 3.2 Base Editing 7 3.3 Prime Editing 8 3.4 Ex-Vivo CRISPR 9 3.5 In-Vivo CRISPR 10 3.6 Alternative techniques and platforms 11 3.7 Late stage privates & publics 13 3.8 Key People and Labs 13 4. Therapeutic Landscape 14 4.1 Present day status 14 4.2 Future Indications 16 4.3 Startups to Watch 17 5. Conclusions 18 5.1 Vertical Strengths 18 5.2 Vertical Weaknesses 18 5.3 Opportunity Cost of Capital 19 5.4 Investment Theses 19 6. References 20 2 1. Summary Since its initial discovery as a genetic reprogramming tool in 2012, CRISPR has widely been regarded as a breakthrough scientific discovery and quickly become one of the hottest new biotechnologies in the industry. However, the CRISPR therapeutics market is still in early stages, with leading therapies only just reaching human clinical trials. Furthermore, the industry is highly defended by IP, and currently addresses a narrow set of indications. Top companies including Beam Therapeutics, Editas Medicine, and Prime Medicine have been founded by the same scientists, and have formed a highly collaborative moat. Remaining companies have partnered with large pharmaceutical companies to fund operations. The future of CRISPR therapeutics development is dependent on technological advances in delivery methods and editing safety and granularity.
    [Show full text]
  • CRISPR Therapeutics AG Annual Report 2021
    CRISPR Therapeutics AG Annual Report 2021 Form 10-K (NASDAQ:CRSP) Published: February 16th, 2021 PDF generated by stocklight.com UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-K (Mark One) ☒ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended December 31, 2020 OR ☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 FOR THE TRANSITION PERIOD FROM TO Commission File Number 001-37923 CRISPR THERAPEUTICS AG (Exact name of Registrant as specified in its Charter) Switzerland Not Applicable (State or other jurisdiction of (I.R.S. Employer incorporation or organization) Identification No.) Baarerstrasse 14 6300 Zug, Switzerland Not Applicable (Address of principal executive offices) (Zip Code) Registrant’s telephone number, including area code: + 41 (0)41 561 32 77 Securities registered pursuant to Section 12(b) of the Act: Trading Title of each class Symbol(s) Name of each exchange on which registered Common Shares, nominal value CHF 0.03 CRSP The Nasdaq Global Market Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the Registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. YES ☒ NO ☐ Indicate by check mark if the Registrant is not required to file reports pursuant to Section 13 or 15(d) of the Act. YES ☐ NO ☒ Indicate by check mark whether the Registrant: (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the Registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days.
    [Show full text]
  • News & Analysis
    NEWS & ANALYSIS NEWS IN BRIEF Intellia Therapeutics and partner Alzheimer prevention failure rattles field, anew Regeneron are working towards a 2020 investigational new drug application for Failed trials of amyloid- modulating Alzheimer disease candidates don’t come as much of a their in vivo NTLA-2001, a systemically surprise any more. But with Amgen and Novartis’s recent decision to halt two phase III trials delivered CRISPR treatment for transthyretin of the BACE1 inhibitor umibecestat for secondary prevention of the neurodegenerative amyloidosis. disease in high-risk patients, a longer shadow has now fallen on the prospects for these Asher Mullard agents in earlier lines of treatment as well. In the Generation S1 trial, the sponsors were testing umibecestat and the amyloid vaccine CAD106 in cognitively unimpaired individuals aged 60 to 75 years with two APOE4 genes, a risk factor for developing Alzheimer disease. In Generation S2, they were testing Longer- lasting HIV drugs umibecestat in cognitively unimpaired participants aged 60 to 75 years with at least one Antiretroviral therapies have revolutionized APOE4 allele. But in July the companies announced that the drug was associated with AIDS care, changing what was once a death worsening in some measures of cognitive function, and discontinued development of the sentence into a chronic and controllable BACE inhibitor. condition. But antiretroviral therapy (ART) After past failures of amyloid-modulating drugs, researchers have posited that these cocktails still have to be taken on a daily agents need to be used earlier in the course of disease — potentially years before symptoms basis, and treatment interruptions can result are detectable — to prevent neuronal death.
    [Show full text]
  • Uncertainty, Institutions and Regulatory Responses to Emerging Technologies: CRISPR Gene Editing in the US and the EU (2012–2019)
    Regulation & Governance (2020) doi:10.1111/rego.12335 Uncertainty, institutions and regulatory responses to emerging technologies: CRISPR Gene editing in the US and the EU (2012–2019) Alberto Asquer Senior Lecturer in Public Policy and Management, School of Finance and Management, SOAS University of London, London, UK Inna Krachkovskaya Research Associate, School of Finance and Management, SOAS University of London, London, UK Abstract This study aims to improve theoretical accounts of regulatory responses to emerging technologies by proposing a model of regulatory development, which incorporates a role for types of uncertainty and for existing regulatory institutions. Differently from existing theories of regulatory development, the model proposed here posits a sequence of cyclical activities where regu- latory responses arise in incremental fashion out of efforts to make sense of emerging technologies and to ponder the applica- bility of existing regulatory tools. The model is discussed on the basis of the comparison between regulatory responses to the emergence of CRISPR gene editing in the US and the EU in the period 2012–2019. The comparison between the two cases suggests how regulatory responses to emerging technologies are affected by expectations of future technological and regulatory developments and by existing regulatory institutions. Keywords: CRISPR, emerging technology, regulatory institution, uncertainty. 1. Introduction The increased pace of scientific discoveries and technological advances of the last decades poses novel challenges for regulators. Emerging technologies - here defined as new technologies characterized by radical novelty, rela- tively fast growth, coherence, prominent impact, and uncertainty (Rotolo et al. 2015) –pose new sort of dangers and hazards to individuals and to the natural environment, build on mechanisms whose underlying cause-effect relationships are not fully understood, and lend themselves – as “technological platforms”–to a plethora of pos- sible uses (Levi-Faur & Comaneshter 2007; Brownsword 2008; Hodge et al.
    [Show full text]
  • Investigating the Role of Microglia in Myelin Development by Liang Li B.Eng
    Investigating the role of microglia in myelin development By Liang Li B.Eng. Chemical and Biomolecular Engineering National University of Singapore, 2014 Submitted to the Institute for Data, Systems, and Society in partial fulfillment of the requirements for the degree of Master of Science in Technology and Policy and Master of Science in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2021 © Massachusetts Institute of Technology 2021. All rights reserved. Author . Institute for Data, Systems, and Society January 27, 2021 Certified by. .. Guoping Feng Poitras Chair Professor of Neuroscience McGovern Institute for Brain Research Thesis Supervisor Certified by. .. Thomas Heldt Associate Professor of Electrical and Biomedical Engineering, Department of Electrical Engineering & Computer Science Thesis Reader Accepted by . Noelle Eckley Selin Director, Technology and Policy Program Associate Professor, Institute for Data, Systems, and Society and Department of Earth, Atmospheric and Planetary Sciences Accepted by . Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science Chair, Department Committee on Graduate Students Investigating the role of microglia in myelin development By Liang Li B.Eng. Chemical and Biomolecular Engineering National University of Singapore, 2014 Submitted to the Institute for Data, Systems, and Society in partial fulfillment of the requirements for the degree of Master of Science in Technology and Policy and Master of Science in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2021 © Massachusetts Institute of Technology 2021. All rights reserved. Abstract We investigate the role of microglia in myelin development. Myelination is an essential process in early development that consists of the ensheathment of axons by myelin, which ensures rapid conduction of action potentials.
    [Show full text]
  • CRISPR Therapeutics, Intellia Therapeutics and Caribou Biosciences Provide Update on U.S Federal Circuit Decision Upholding the Ruling by U.S
    CRISPR Therapeutics, Intellia Therapeutics and Caribou Biosciences Provide Update on U.S Federal Circuit Decision Upholding the Ruling by U.S. Patent and Trademark Office in Interference Proceeding Relating to CRISPR/Cas9 Genome Editing Technology The interference proceeding remains terminated without any determination on inventorship of CRISPR/Cas9 genome editing application to eukaryotic cells University of California/University of Vienna/Dr. Charpentier have patent applications covering the use of CRISPR/Cas9 genome editing technology in all environments that do not interfere with the Broad’s patent claims in this proceeding Additional legal paths are available to recognize the priority of the University of California/University of Vienna/Charpentier intellectual property covering eukaryotic cells University of California/University of Vienna/Dr. Charpentier were recently issued a U.S. patent for the use of CRISPR/Cas9 genome editing that covers guide formats widely used across the human therapeutic and agricultural industries ZUG, Switzerland and CAMBRIDGE, Mass. and BERKELEY, Calif., Sept. 10, 2018 (GLOBE NEWSWIRE) -- CRISPR Therapeutics AG (NASDAQ:CRSP), Intellia Therapeutics, Inc. (NASDAQ:NTLA) and Caribou Biosciences, Inc. announced that the U.S. Court of Appeals for the Federal Circuit (the “Federal Circuit”) affirmed the decision by the U.S. Patent and Trademark Office’s (“USPTO”) Patent Trial and Appeal Board (“PTAB”) in an interference proceeding relating to CRISPR/Cas9 genome editing technology. The interference was requested by the Regents of the University of California, the University of Vienna and Dr. Emmanuelle Charpentier (collectively “UC”), co-owners of foundational intellectual property relating to CRISPR/Cas9 genome engineering, against the Broad Institute, Harvard University and the Massachusetts Institute of Technology (collectively “Broad”).
    [Show full text]
  • Transformative Gene-Based Medicines for Serious Human Diseases
    ANNUAL REPORT 2018 Transformative Gene-Based Medicines For Serious Human Diseases CRISPR Therapeutics AG Baarerstrasse 14 6300 Zug Switzerland Confidential UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-K (Mark One) ⌧ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended December 31, 2018 OR TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 FOR THE TRANSITION PERIOD FROM TO Commission File Number 001-37923 CRISPR THERAPEUTICS AG (Exact name of Registrant as specified in its Charter) Switzerland Not Applicable (State or other jurisdiction of (I.R.S. Employer incorporation or organization) Identification No.) Baarerstrasse 14 6300 Zug, Switzerland Not Applicable (Address of principal executive offices) (Zip Code) Registrant’s telephone number, including area code: +41 (0)41 561 32 77 Securities registered pursuant to Section 12(b) of the Act: Common shares, nominal value CHF 0.03 per share The Nasdaq Global Market Title of each class Name of each exchange on which registered Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the Registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. YES NO Indicate by check mark if the Registrant is not required to file reports pursuant to Section 13 or 15(d) of the Act. YES NO Indicate by check mark whether the Registrant: (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the Registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days.
    [Show full text]