Modeling and Analysis of Next Generation 9-1-1 Emergency Medical Dispatch Protocols

Total Page:16

File Type:pdf, Size:1020Kb

Modeling and Analysis of Next Generation 9-1-1 Emergency Medical Dispatch Protocols MODELING AND ANALYSIS OF NEXT GENERATION 9-1-1 EMERGENCY MEDICAL DISPATCH PROTOCOLS Neeraj Kant Gupta, BE(EE), MBA, MS(CS) Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS August 2013 APPROVED: Ram Dantu, Major Professor Kathleen Swigger, Committe Member Paul Tarau, Committee Member Sam G Pitroda Committee Member Barrett Bryant, Chair of the Department of Computer Science and Engineering Costas Tsatsoulis, Dean of the College of Engineering Mark Wardell, Dean of the Toulouse Graduate School Gupta, Neeraj Kant. Modeling and Analysis of Next Generation 9-1-1 Emergency Medical Dispatch Protocols. Doctor of Philosophy (Computer Science), August 2013, 192 pp., 12 tables, 72 figures, bibliography, 196 titles. In this thesis I analyze and model the emergency medical dispatch protocols for Next Generation 9-1-1 (NG9-1-1) architecture. I have identified various technical aspects to improve the NG9-1-1 dispatch protocols. The specific contributions in this thesis include developing applications that use smartphone sensors. The CPR application uses the smartphone to help administer effective CPR even if the person is not trained. The application makes the CPR process closed loop, i.e., the person who administers the CPR as well as the 9-1-1 operator receive feedback and prompt from the application about the correctness of the CPR. The breathing application analyzes the quality of breathing of the affected person and automatically sends the information to the 9-1-1 operator. In order to improve the human computer interface at the caller and the operator end, I have analyzed Fitts law and extended it so that it can be used to improve the instructions given to a caller. Using EEG waves, I have analyzed and developed a mathematical model of a person's cognitive impairment. Finally, I have developed a mathematical model of the response time of a 9-1-1 call and analyzed the factors that can be improved to reduce the response time. In this regard, another application, I have developed, allows the 9-1-1 operator to remotely control the media features of a caller's smartphone. This is needed in case the caller is unable to operate the multimedia features of the smartphone. All these building blocks come together in the development of an efficient NG9-1-1 emergency medical dispatch protocols. Copyright 2013 by Neeraj Kant Gupta ii ACKNOWLEDGEMENTS I wish to thank various individuals who have helped me throughout the course of this dissertation. First and foremost, I would like to thank my advisor Dr. Ram Dantu who has inspired me right from the day I started, providing direction, and invaluable suggestions required for this dissertation. I would like to thank Dr. Kathleen Swigger, Dr. Paul Tarau, and Dr. Sam Pitroda for serving on my dissertation committee. Finally, I would like to thank my friends and my family. I would especially like to thank my parents, Amar Kant and Sumitra Gupta for constant encouragement. iii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ................................................................................................ v CHAPTER 1. INTRODUCTION .................................................................................... 1 1.1. Motivation and Objective .......................................................................... 2 1.2. Overview of Each Chapter ......................................................................... 3 CHAPTER 2. NEXT GENERATION 9-1-1: ARCHITECTURE AND CHALLENGES IN REALIZING AN IP-MULTIMEDIA-BASED EMERGENCY SERVICE .................. 6 2.1. Introduction ............................................................................................... 6 2.2. State of the Current 9- 1-1 System ............................................................ 7 2.3. NG-9-1-1: How it Works ............................................................................ 9 2.4. Main Challenges of NG-9-1-1 .................................................................... 10 2.4.1. Support for New and Enhanced Services ........................................ 11 2.4.2. Accurate Localization of Emergency Calls in Highly Mobile Environments ................................................................................. 16 2.4.3. Securing PSAPs: Vulnerabilities of the NG9-1-1 Network .............. 18 2.4.4. Continuous Availability of PSAPs ................................................. 20 2.4.5. Addressing the Challenges in the NG-9-1-1 Architecture ............... 21 2.5. Current and Future Work ......................................................................... 22 2.5.1. NG-9-1-1 Progress .......................................................................... 22 2.5.2. Future Work - A New NG-9-1-1 Test Bed ..................................... 24 CHAPTER 3. EFFECTIVE CPR PROCEDURE WITH REAL TIME EVALUATION AND FEEDBACK USING SMARTPHONES ............................................................... 25 3.1. Introduction .............................................................................................. 25 3.1.1. Effective CPR ................................................................................ 26 3.1.2. Use of Technology for Effective CPR ............................................. 27 3.2. Motivation ................................................................................................ 28 3.3. Experiments and Results ........................................................................... 33 3.3.1. Algorithm for Calculating Frequency and Depth of Compressions . 34 3.3.2. Accuracy of the Distance Calculation ............................................. 38 3.3.3. Results ............................................................................................ 39 iv 3.3.4. Accuracy and Frequency of Alerts ................................................. 40 3.3.5. CPR in a Moving Vehicle ............................................................... 44 3.3.6. Calculation of Oxygen Saturation of Blood .................................... 45 3.4. Conclusions ............................................................................................... 46 CHAPTER 4. EVALUATION OF RESPIRATION QUALITY USING SMARTPHONE ....................................................................................................................................... 48 4.1. Introduction .............................................................................................. 48 4.2. Breathing and 911 Calls ............................................................................ 49 4.3. Devices to Measure Vital Signs ................................................................. 49 4.4. Objective ................................................................................................... 50 4.5. Experimental Setup ................................................................................... 51 4.5.1. Placement of the Smartphone ........................................................ 51 4.5.2. Quality of Breathing Slow Breathing ............................................. 52 4.5.3. Quality of Breathing Fast Breathing .............................................. 53 4.5.4. Quality of Breathing Irregular Breathing ....................................... 54 4.5.5. Quality of Breathing Effort to Breath ............................................ 55 4.5.6. Accuracy of Results ........................................................................ 55 4.6. Conclusions ............................................................................................... 56 4.7. Future Work ............................................................................................. 56 CHAPTER 5. FITTS LAW MODIFICATIONS FOR APPLICATION TO EMERGENCY DISPATCH PROTOCOLS ................................................................... 58 5.1. Introduction .............................................................................................. 58 5.2. Fitts Law and Task Activities................................................................... 59 5.2.1. Fitts Law and Current Literature .................................................. 59 5.2.2. Remote Task Control ..................................................................... 61 5.2.3. Task Activity ................................................................................. 62 5.2.4. Problem Definition ......................................................................... 62 5.3. Components of Modified Fitts Law ........................................................... 63 5.3.1. Motion Activity .............................................................................. 63 5.3.2. Methodology for First Set of Experiments ...................................... 65 5.3.3. Results of First Set of Experiments ................................................ 66 5.3.4. Conclusions for the First Set of Experiments ................................. 70 v 5.3.5. Methodology for Second Set of Experiments .................................. 71 5.3.6. Results of the Second Set of Experiments ...................................... 71 5.3.7. Conclusions of Second Set of Experiments ..................................... 72 5.4. Conclusion and Discussion ........................................................................ 74 5.4.1. Applications of this Study .............................................................. 74 5.4.2. Future Work .................................................................................. 75 CHAPTER 6. QUANTIFYING
Recommended publications
  • Course 5 Lesson 2
    This material is based on work supported by the National Science Foundation under Grant No. 0802551 Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author (s) and do not necessarily reflect the views of the National Science Foundation C5L3S1 With the advent of the Internet, social networking, and open communication, a vast amount of information is readily available on the Internet for anyone to access. Despite this trend, computer users need to ensure private or personal communications remain confidential and are viewed only by the intended party. Private information such as a social security numbers, school transcripts, medical histories, tax records, banking, and legal documents should be secure when transmitted online or stored locally. One way to keep data confidential is to encrypt it. Militaries,U the governments, industries, and any organization having a desire to maintain privacy have used encryption techniques to secure information. Encryption helps to boost confidence in the security of online commerce and is necessary for secure transactions. In this lesson, you will review encryption and examine several tools used to encrypt data. You will also learn to encrypt and decrypt data. Anyone who desires to administer computer networks and work with private data must have some familiarity with basic encryption protocols and techniques. C5L3S2 You should know what will be expected of you when you complete this lesson. These expectations are presented as objectives. Objectives are short statements of expectations that tell you what you must be able to do, perform, learn, or adjust after reviewing the lesson.
    [Show full text]
  • Copyrighted Material
    33_754935 bindex.qxp 11/7/05 10:09 PM Page 345 Index Applications Menu, 42–43, 68–71 • Symbols • Applixware Office package, 15 appointments, tracking, 210 * (asterisk), 249, 251 archives, packing and unpacking (tar), 20, \ (backslash), 248 337–338 - (dash), 94 arguments, command line, 247 . (dot), 92 asterisk (*), 249, 251 ! (exclamation point), 252–253 Asymmetric DSL (ADSL), 108–109 / (forward slash), 79, 81 attachments, e-mail, 154 > (greater-than sign), 249 audio CDs, playing, 221–223 - (hyphen), 95 authentication, 292 < (less-than sign), 249 automatic command completion, 250 . (period), 96 automatic login, 40, 318–319, 325 | (pipe), 248 ? (question mark), 251 " (quotation marks), 247 ; (semicolon), 248 • B • [] (square brackets), 252 backdoor, 292 .. (two dots or dot-dot), 92 background, desktop, 73–74, 75–76 backing up files, 20 backslash (\), 248 • A • base station, 129 bash (Bourne Again Shell) access point, wireless LAN, 129, 131 automatic command completion, 250 Adobe Portable Document Format. See PDF combining commands, 248 ADSL (Asymmetric DSL), 108–109 described, 47–48, 246 AES (Advanced Encryption Standard), 129 error messages, saving to file, 249–250 aggregator, RSS, 185 file, command input from, 249 AIM (America Online instant messaging output, saving to file, 249 service), 54, 161–162 repeating previously typed commands, Akregator news reader, 54, 185–186 252–253 amaroK music player, 224 syntax, 247–248 Apache Web server, 16 wildcards, 251–252 applets, 68, 75 bastion host, 293 application gateway, 292 bit bucket, 250 applications Blam RSS reader, 54 controlling, 18–19 block device, 94 development, 17 Bluetooth wireless, 20, 271 e-mail, 152–153 bookmark field, 200 GNOME Desktop, illustrated,COPYRIGHTED 64 boot menu MATERIAL items, installing, 27–28 GNU, 343 boot process, starting and stopping services, installing at setup, 32 263–264 KDE Desktop, illustrated, 64 booting, 26–27, 39–40 Linux packages, 11 Bourne Again Shell.
    [Show full text]
  • Master's Thesis Electronic Gatekeeper Using ETHERNET
    University of West Bohemia Faculty of Applied Sciences Department of Computer Science and Engineering Master’s thesis Electronic Gatekeeper using ETHERNET Plzeň 2019 Hamza Elghoul Místo této strany bude zadání práce. Declaration I hereby declare that this master’s thesis is completely my own work and that I used only the cited sources. Plzeň, 2 May 2018 Hamza Elghoul Abstract The aim of this thesis is the analysis and the realization of a budget 2-way communication system using ETHERNET connection, more specific- ally a door intercom station (hereinafter ”Bouncer” or "Gatekeeper"), where it is possible to make voice calls between two CLIENTS, a CALLER and a CALLEE with an acceptable to minimal delay. There are many alternative methods available for implementing such sys- tems, this project will try to compare some of these solutions and choose the most convenient platform according to a number of factors, such as band- width, processing power needed and communication protocols in question. Keywords: VoIP, SIP,SDP, server, client, LAN, ethernet, embedded, audio, raspberry pi Contents Page List of Figures7 1 Preface 10 2 Analysis 11 2.1 Objectives and Requirements................. 11 2.2 Hardware............................ 12 2.2.1 Arduino......................... 12 2.2.2 RaspberryPi 3 Model B................ 13 2.2.3 Banana Pi........................ 14 2.2.4 Orange Pi........................ 15 2.2.5 CubieBoard 2...................... 16 2.2.6 Beagle Bone Black................... 16 2.3 Application........................... 18 2.4 Audio capture and digitalisation................ 19 2.4.1 Signaling Protocols................... 20 2.5 Communication Protocol.................... 23 2.5.1 Session Initiation Protocol............... 23 2.5.2 Real Time Protocol..................
    [Show full text]
  • Cisco SCA BB Protocol Reference Guide
    Cisco Service Control Application for Broadband Protocol Reference Guide Protocol Pack #60 August 02, 2018 Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • ULTIMA X Series 3 EC Declaration of Conformity MSA
    Operating Manual ULTIMAX-Series Gas Monitors Order No. 10046690/09 MSA AUER GmbH Thiemannstrasse 1 D-12059 Berlin Germany © MSA AUER GmbH. All rights reserved MSA EC Declaration of Conformity EC Declaration of Conformity Manufactured by: Mine Safety Appliances Company 1000 Cranberry Woods Drive Cranberry Township, PA 16066 USA The manufacturer or the European Authorized Representative: MSA AUER GmbH, Thiemannstrasse 1, D-12059 Berlin declares that the ULTIMA XE Main product ULTIMA XE Main with HART Module based on the EC-Type Examination Certificate: DMT 02 ATEX E 202 X complies with the ATEX directive 94/9/EC, Annex III. Quality Assurance Notification complying with Annex IV of the ATEX Directive 94/9/EC has been issued by Ineris of France, Notified Body number: 0080. The product is in conformance with the EMC directive 2004 / 108/ EC, EN 50270 :2006 Type 2 *, EN 61000 - 6 - 4 : 2007 * EN 61000-4-6 : Ultima XE MAIN HART MODULE : occasional transmission error can appear at the 2-wire version. A fault check has to be used at the receiver unit. The product complies with the directive 96/98 / EC (MarED), based on the EC-Type Examination Certificate : SEE BG 213.038 The quality survaillance is under the control of SEE BG, Notified Body number: 0736 We further declare that the product complies with the provisions of LVD Directive 2006 / 95/ EC, with the following harmonised standard: EN 61010-1 :2002 MSA AUER GmbH Berlin, October 2008 Dr. Axel Schubert R&D Instruments ® GB ULTIMA X Series 3 EC Declaration of Conformity MSA EC Declaration of Conformity Manufactured by: Mine Safety Appliances Company 1000 Cranberry Woods Drive Cranberry Township, PA 16066 USA The manufacturer or the European Authorized Representative: MSA AUER GmbH, Thiemannstrasse 1, D-12059 Berlin declares that the product ULTIMA SENSOR XE based on the EC-Type Examination Certificate: DMT 02 ATEX E 202 X complies with the ATEX directive 94/9/EC, Annex III.
    [Show full text]
  • Voip): SIP and Related Protocols Fall 2013, Period 1 Lecture Notes of G
    IK2554 Practical Voice Over IP (VoIP): SIP and related protocols Fall 2013, Period 1 Lecture notes of G. Q. Maguire Jr. For use in conjunction with: Henry Sinnreich and Alan B. Johnston, Internet Communications Using SIP: Delivering VoIP and Multimedia KTH Information and Services with Session Initiation Protocol, 2nd Edition, Wiley, Communication Technology August 2006, ISBN: 0-471-77657-2. © 2004-2013 G.Q.Maguire Jr. All rights reserved. No part of this course may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission of the author. Last modified: 2013.08.30:12:51 Maguire Cover.fm Total pages: 1 [email protected] 2013.08.30 Module 1: Introduction........................................................................... 35 Welcome to the course! .......................................................................... 36 Staff Associated with the Course............................................................ 37 Instructor (Kursansvarig) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 37 Goals, Scope and Method....................................................................... 38 Goals of the Course - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 38 Scope and Method - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    [Show full text]
  • Wiretapping End-To-End Encrypted Voip Calls Real-World Attacks on ZRTP
    Institute of Operating Systems and Computer Networks Wiretapping End-to-End Encrypted VoIP Calls Real-World Attacks on ZRTP Dominik Schürmann, Fabian Kabus, Gregor Hildermeier, Lars Wolf, 2017-07-18 wiretapping difficulty End-to-End Encryption SIP + DTLS-SRTP (SIP + Datagram Transport Layer Security-SRTP) End-to-End Encryption & Authentication SIP + SRTP + ZRTP Introduction Man-in-the-Middle ZRTP Attacks Conclusion End-to-End Security for Voice Calls Institute of Operating Systems and Computer Networks No End-to-End Security PSTN (Public Switched Telephone Network) SIP + (S)RTP (Session Initiation Protocol + Secure Real-Time Transport Protocol) 2017-07-18 Dominik Schürmann Wiretapping End-to-End Encrypted VoIP Calls Page 2 of 13 wiretapping difficulty End-to-End Encryption & Authentication SIP + SRTP + ZRTP Introduction Man-in-the-Middle ZRTP Attacks Conclusion End-to-End Security for Voice Calls Institute of Operating Systems and Computer Networks No End-to-End Security PSTN (Public Switched Telephone Network) SIP + (S)RTP (Session Initiation Protocol + Secure Real-Time Transport Protocol) End-to-End Encryption SIP + DTLS-SRTP (SIP + Datagram Transport Layer Security-SRTP) 2017-07-18 Dominik Schürmann Wiretapping End-to-End Encrypted VoIP Calls Page 2 of 13 wiretapping difficulty Introduction Man-in-the-Middle ZRTP Attacks Conclusion End-to-End Security for Voice Calls Institute of Operating Systems and Computer Networks No End-to-End Security PSTN (Public Switched Telephone Network) SIP + (S)RTP (Session Initiation Protocol + Secure Real-Time
    [Show full text]
  • Policy Options and Regulatory Mechanisms for Managing Radicalization on the Internet
    Policy options and regulatory mechanisms for managing radicalization on the Internet Paris, 30 September 2016 “[…] I firmly believe that in a free democratic society, freedom of speech and expression is one of the most prized freedoms which must be defended and upheld at any cost and this should be particularly so in the land of Voltaire. It is indeed unfortunate that in the world of today, when science and technology have advanced the frontiers of knowledge and mankind is beginning to realize that human happiness can be realized only through inter-dependence and cooperation, the threshold of tolerance should be going down. It is high time man should realize his spiritual dimension and replace bitterness and hatred by love and compassion, tolerance and forgiveness.” Justice Prafullachandra Bhagwati Dan Shefet (Individual Specialist) ACKNOWLEDGEMENTS The author wishes to thank the following for their support, valuable advice and input throughout the drafting of the Report: Dr. Indrajit Banerjee and his team in UNESCO’s Knowledge Societies Division The UNESCO Delegates and Ministries of Justice/Interior of countries that have participated in the Country Survey. Alexander Linden, Honorary advisor to the French Supreme Court Janice Duffy, Researcher, Australia Pavan Duggal, Supreme Court Lawyer, India Tom Høyem, Former Minister in Denmark under Poul Schlüter Francesca Musiani, Researcher at the CNRS Institute for Communication Sciences and Member of the French National Assembly’s Commission on the Law and Rights in the Digital Era Sami Mahbouli, Lawyer at The Tunisian Supreme Court and Columnist Sabine Leutheusser-Schnarrenberger, Former Minister of Justice under Angela Merkel Marc Randazza, First Amendment Attorney, United States Viswa Sadasivan, CEO of Strategic Moves (Consultancy agency in Singapore) and former member of the Singaporean Parliament Mr K.
    [Show full text]
  • Toxic Potency Measurement for Fire Hazard Analysis
    United States Department of Commerce National Institute of Standards and Technology NIST Special Publication 827 Toxic Potency Measurement for Fire Hazard Analysis Vytenis Babrauskas, Barbara C. Levin, Richard G. Gann, Maya Paabo, Richard H. Harris, Jr., Richard D. Peacock, and Shyuitsu Yusa NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY Research Information Center Gaithersburg, MD 20899 DATE DUE Demco, Inc. 38-293 MP NIST Special Publication 827 m Toxic Potency Measurement for Fire Hazard Analysis Vytenis Babrauskas, Barbara C. Levin, Richard G. Gann, Maya Paabo, Richard H. Harris, Jr., Richard D. Peacock, and Shyuitsu Yusa Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 December 1991 U.S. Department of Commerce Robert A. Mosbacher, Secretary National Institute of Standards and Technology John W. Lyons, Director National Institute of Standards U.S. Government Printing Office For sale by the Superintendent and Technology Washington: 1991 of Documents Special Publication 827 U.S. Government Printing Office Natl. Inst. Stand. Technol. Washington, DC 20402 Spec. Publ. 827 119 pages (Dec. 1991) CODEN: NSPUE2 Table of Contents Page List of Figures v List of Tables vi Executive Summary vii Abstract 1 1 Introduction 1 2 Computations of fire hazard 4 2.1 Quantifying hazard in fires 4 2.1.1 Hand calculations 4 2.1.2 Computer models 5 2.2 Definitions of terms 6 2.3 Fire scenarios and toxic potency data 6 3 Types of fires 9 4 Toxic potency measurements 13 5 Criteria for bench-scale toxic
    [Show full text]
  • Internet Telephony with Linphone WELLWELL CONNECTEDCONNECTED
    Linphone COVER STORY Internet telephony with Linphone WELLWELL CONNECTEDCONNECTED When you want to call your friends in distant countries, don’t pick up municate with the VoIP provider, so you will need to install the library first. To do the phone; just put on your headset and fire up Linphone. so, open a terminal window, then be- come root by typing su and supplying BY SIMONE SCHÄFER the root password. Unpack the archive by typing tar xzf libosip2-2.2.0.tar.gz, ne of the most popular methods wants to take incoming calls via Purtel. and then change to the new directory (cd for accessing Voice over IP tech- The procedures are similar for other pro- libosip2-2.2.0). The following commands Onology is through a so-called viders. will build and install the library: softphone. A softphone is simply a com- puter program running on your desktop Installation ./configure --prefix=/usr that handles call establishment and com- The source code for the 1.1.0 release, make munication. Linphone [1] is one of the and the libraries, are available on the most popular softphone applications for DVD with this issue below LinuxUser/ Phone Numbers and SIP Ids Linux. Linphone is optimized for the linphone/. In the simplest of all cases, the phone Gnome desktop, although that doesn’t Mandriva Linux 2006 has the current number will be a simple telephone num- mean you can’t run it on KDE. This arti- 1.1.0 version. Gentoo Linux users can ber followed by the SIP domain, such as cles describes how to install, configure, install Linphone 1.1.0 simply by running [email protected].
    [Show full text]
  • Design of a Handset for the IP Multimedia Subsystem a Case Study
    Design of a Handset for the IP Multimedia Subsystem A Case Study James Sunil Selvam ITTIAM Systems [email protected] IMS Architecture OSA AS GSM SCF Application Layer OSA-SCS SIP AS IM-SSF Session Control CSCF Layer HSS GPRS, CDMA MGCF 802.11, DSL SIP Media Transport Layer Gateway EndPoint PSTN PTT, IM, VVoIP VoIP PTT, IM, VVoIP Hardware Block Diagram MIC LCD / Audio TOUCH Codec Speaker/ SCREEN Headphone GSM/ Keypad GPRS JTAG PROCESSOR WLAN Serial Board Control Flash/ Power SDRAM USB Reg TI Innovator Kit based on OMAP1510 Customised Hardware Based on OMAP™ Innovator Kit WLAN NOISE SUPRESSOR R O USB1 USB DWL-G122 T C TRANSCEIVER WLAN E 3.3V N N 5V O C GSM/ SIM E C GPRS CARD A F R E UART2 GM47 T LEVEL GSM/ N I SHIFTER GPRS R O T A MIC V O SPEAKER N N I POWER 2.75V (LEVEL SHIFTER) 5V POWER CONVERTERS 3.6V (GM47) Implementation Hardware Software Block Level SIP : oSIP Linux 2.6.16 RTP/RTCP : oRTP Circuit Design Audio Codec : Kernel Dep. G711, SPEEX, GSM Artwork Driver Management of SIM Test Programs Air Interface : GM47 TI Innovator Device + Custom Hardware Kernel Related Application Services VoIP : Linphone UA GUI Ergonomics Packaging ID Test Setup SIP Proxy & Registrar Ethernet Linphone UA Linphone UA IMS Handset Test Setup Integrated Product IMS Handset Design of a Handset for the IP Multimedia Subsystem - A Case Study James Selvam ITTIAM Systems (Pvt) Ltd Part 1: IMS Why IMS? • Internet – Ease of service creation & provision – Open protocols & large professional talent – Wealth of information • Cellular World – Service on the move
    [Show full text]
  • Communication and Security Survey Results from US, UK and German Business Leaders
    The most secure collaboration platform. Communication and Security Survey results from US, UK and German business leaders Communication and Security Survey | wire.com | February 2019 1 An introduction Every year we ask executives about key topics - this year we chose to focus on communication, security, privacy, and regulation as these have been hot topics in 2018. We asked more than 300 executives from US and Europe about their views on these topics. In addition, please find at the end of this presentation my personal predictions for 2019. We trust you will enjoy the report. Morten Brøgger · CEO Best regards, Morten Brøgger Chief Executive Officer at Wire Communication and Security Survey | wire.com | February 2019 2 Are we still secure? Many organizations have been a …. want their organization to be more proactive victim of a cyberattack and not a 81% in the ways it protects its sensitive information, single respondent disagreed that communication, and/or data. cybersecurity is a major challenge for businesses. Yet while the challenges posed by cybersecurity are understood …. believe security and compliance are key by businesses, some organizations 79% parameters when selecting cloud business aren’t doing enough to prepare. In crisis solutions. situations, in particular, businesses have gaps in their ability to communicate internally and externally in a safe and secure way. …. of organizations don’t have or are unsure if they 38% have, a plan in case of a security breach. …. of respondents said it would be useful to be 83% able to extend a company's secure communication infrastructure to business partners and customers Communication and Security Survey | wire.com | February 2019 3 Emails are popular, Email remains a popular communication to changes in instant messaging but are they tool yet business leaders spend too technology, an overwhelming number much of their time using it.
    [Show full text]