Sharelatex Example
Total Page:16
File Type:pdf, Size:1020Kb
ShadX-New Horizon Presents Project I-MARS: Intelligent Multi-surface Access Reusable Spacecraft May 2019 Table of Contents Table of Contents 10 Attitude and Orbit Determination and Control Systems 45 List of Figures ii 10.1 Perturbations................ 45 10.2 Attitude Control Methods......... 47 List of Tables iii 10.3 ADCS in Initiation and Assembly Config- uration.................... 50 Acronyms iv 10.4 Breakdown................. 51 10.5 Intelligence and Autonomy........ 53 1 Historical Perspective Leading to I-MARS1 11 Human Habitation, ECLSS and Safety 55 11.1 Habitat Selection.............. 55 2 Mission Definition2 11.2 ECLSS.................... 57 2.1 Requirements Definition..........2 11.3 Service Module Sizing........... 59 3 Executive Summary4 12 Thermal 61 12.1 Thermal Control Systems (TCS)..... 61 4 Fact Sheet6 13 Power 65 5 Mission Overview7 13.1 Power Source................ 65 13.2 Energy Storage............... 66 5.1 Mission Operational Architecture.....7 13.3 EPS Configuration............. 68 5.2 Concept of Operation...........9 14 Structure 69 6 Science of The Moon 13 14.1 Structure Requirements.......... 69 6.1 Main Physical Characteristics of the Moon 13 14.2 Material Selection............. 69 6.2 Environmental Maps Analysis of the Lu- 14.3 Main Frame Design and Analysis..... 70 nar Surface................. 13 14.4 Housing and Meteoroid Shielding..... 71 6.3 Landing Sites Analysis.......... 15 14.5 Landing Legs Structural Analysis..... 71 14.6 A/ODCS Tank Design........... 74 7 Configuration Study & Development 17 15 Telemetry, Tracking and Command 7.1 Ariana Configuration selection...... 18 (TT&C) 75 7.2 Detail Design................ 21 15.1 Driving Requirements........... 75 15.2 TT&C Equipment............. 75 8 Trajectory 28 15.3 Ground Station............... 76 8.1 Trajectory Requirements.......... 28 15.4 DSG Communication Relay........ 76 8.2 Near Rectilinear Halo Orbit of DSG... 28 15.5 Communication Architecture....... 78 8.3 Assembly.................. 28 15.6 Link Budgets................ 79 15.7 Command and Data Handling....... 79 8.4 DSG To The Lunar Surface Transfer... 31 8.5 Descent Phase............... 33 16 Life Cycle & Cost 80 8.6 Ascent Phase................ 36 16.1 Cost Segments............... 81 8.7 ∆V Budget................. 37 16.2 Life Cycle Cost............... 81 16.3 Ariana Lifetime............... 82 9 Propulsion 38 16.4 Schedule................... 83 9.1 Propulsion Overview............ 38 17 Risk Assessment 85 9.2 Propulsion Requirements......... 38 17.1 Anticipated Risks and Mitigation Strategy 85 9.3 Propulsion System Selection........ 38 9.4 Propellant Selection............ 39 18 Appendix 87 9.5 Main Engine................ 41 19 Compliance Matrix 88 9.6 Propellant Mass and Volume....... 42 9.7 On/Off Strategy & Burn Time...... 44 References 92 i List of Tables List of Figures 9.3 Propellant Mass vs. Payload....... 43 9.4 On/Off Strategy.............. 44 5.1 Docking Sequence............. 10 5.2 ConOps Including Rendezvous (Schematic). 12 10.1 Perturbations Magnitude Applied to Ari- ana vs Height from Lunar Surface.... 46 6.1 Topography, Slope, and Roughness of the 10.2 CG Movement vs Fuel Consumption... 47 Lunar Surface................ 13 6.2 Lunar Thermal Map............ 14 10.3 Thruster Configuration (Extra four radial 6.3 High-Priority Landing Sites (with LOLA- thrusters are for assembly phase 10.3.1). 49 shaded topography)............ 16 10.4 Sensor Configuration; Sensor sizes are 10 times more than real size for comfortable 7.1 External-cargo............... 19 viewing; Star Sensors (Blue), Sun Sensors 7.2 Ramp-type LaU............... 19 (Red), LiDAR (Green) ............ 49 7.3 Cargo-mid- propulsion........... 19 10.5 Thrusters Configuration.......... 51 7.4 LaU Rail Mechanism............ 20 10.6 Typical ADCS Logic............ 53 7.5 LaU Strategy of Slide-out Configuration. 20 10.7 Intelligent ADCS Logic.......... 54 7.6 Aligned rails of LaU System........ 20 7.8 LaU Procedure............... 21 11.1 Schematic of M-BEAM........... 57 7.7 LaU Rail Mechanism............ 21 11.2 SM Sizing.................. 59 7.9 View of the Vehicle on the Sloped Surface 21 7.10 Loading and Unloading Mechanisms... 23 12.1 Force Exerted on Cargo by Nozzle Jet.. 63 7.11 Alternative Thrusters........... 24 12.2 Free Diagram of Forces on Cargo..... 63 7.12 Ariana's Ladder............... 24 14.1 Ariana's Main Structure Frame...... 70 8.1 Ariana's Modules Housing into SLS Block 14.2 Simulation Results for the Loading Scenario 71 1B...................... 29 14.3 Landig Legs FEM Analysis........ 72 8.2 Rendezvous ∆V .............. 30 14.4 STA Configuration............. 73 8.3 Round Trip ∆V Contour For Lunar Surface 32 8.4 Simulated Trajectory For Round Trip to 14.5 ATA Configuration............. 73 Moon.................... 32 14.6 A/ODCS Tanks............... 74 8.5 The LLO and Descent Trajectory..... 34 8.6 Ariana Descent Trajectory Schematic... 34 15.1 Side View of NRHO............ 77 8.7 Ariana Descent Trajectory......... 35 15.2 Ariana and DSG Access Window in The Far Side................... 78 8.8 T=WL Trade Study............. 36 8.9 Ariana Ascent Trajectory Schematic... 36 8.10 Altitude vs. Ascent Time......... 37 16.1 Annual US Inflation Rate from 1950 to 2030 80 16.2 Comparison of Estimated Costs at Phases 9.1 Ariana Main Propulsion System...... 38 Calculated by Cost Models........ 82 9.2 Propellant mass needed for the descent 16.3 Timeline of the I-MARS Program..... 84 and ascent phase using LH2/LO2 vs. CH4/LO2 for AMPS............ 41 17.1 Fever Chart of Ariana's Missions..... 85 List of Tables 5.5 Stages Classification.............9 2.1 Requirement Definition..........3 6.1 Physical Properties of the Moon and Earth 13 6.2 Thermal Data of Lunar Surface...... 14 5.1 Overall Configuration Trade Study....7 5.2 Ariana's Design Reqiurements and Con- 6.3 Potential Landing Sites Analysis..... 16 straints...................8 5.3 LEO & DSG Assembly Strategy Trade 7.1 Requirement Effect on Configuration Design 17 Study....................8 7.2 Configuration Trade Study Chart..... 18 5.4 ∆V Budget for LEO to NRHO Transfer.9 7.3 Docking between Modules......... 22 ii List of Tables 8.1 The Operational Requirements of RFP.. 28 11.6 Consumables Mass and Volume...... 59 8.2 Main Parameters of Simulated NRHO.. 28 11.7 SM Components Specifications...... 60 8.3 Launch Vehicle Selection Requirements.. 28 8.4 Launch Vehicles with The Ability of 12.1 Typical Thermal Requirements for Com- Translunar Injection............ 29 ponents................... 61 8.5 Required ∆V s For Phasing Maneuvers.. 30 12.2 Summary of Thermal Control Systems 8.6 Docking ∆V Budget............ 31 properties.................. 64 8.7 Crew/Cargo Mode Objectives....... 31 8.8 Crew Mode Transfer Timeline....... 33 13.1 Power Budget................ 65 8.9 Cargo Mode Transfer Timeline...... 33 13.2 Power Source Comparision......... 66 8.10 ∆V Budget................. 37 13.3 Power Source Trade Study......... 66 13.4 Solar Panel Charactristics......... 67 9.1 Propulsion Subsystem Level Requirements 38 13.5 Secondary Power Comparision....... 67 9.2 Propellant Trade Study Evaluation.... 40 13.6 Energy Storage Mass Breakdown..... 68 9.3 Liquid Hydrogen vs. Liquid Methane... 40 9.4 Main Engine Requirements........ 41 14.1 Structure Subsystem Level Requirements 69 9.5 5-Engine Configuration Pros and Cons.. 42 14.2 Characteristics of The Metal Alloys and 9.6 The RL10 CECE Specifications (Base De- Composite Materials............ 69 monestrator)................ 42 14.3 Common Metal Alloys Mechanical Prop- 9.7 Propellant Mass & Volume & Engines' erties..................... 70 Burn Time Specifications......... 43 14.4 Block 1B PPL/CPL Combined Load Factors 71 14.5 Maximum Needed Propellant Volume.. 72 10.1 List of Mission Requirements....... 45 14.6 Comparison of ATA and STA Occupied 10.2 List of Internal Perturbations and Their Height.................... 73 Effects.................... 46 14.7 Properties of IM7 CFRC.......... 73 10.3 Attitude Control Methods and Their Ca- 14.8 Comparison Between CFRC and Al Alloys pabilities................... 47 Tank Mass................. 74 10.4 Comparison Between ADCS Actuators.. 48 14.9 Propellant Mass & Volume Specifications 74 10.5 Proper Thrusters and Performance Char- acteristics.................. 48 15.1 TT & C Requirements........... 75 10.6 Typical ADCS Sensors........... 48 15.2 TT&C Components and Their Masses and 10.7 List of Sun Sensors............. 49 Power Budget................ 76 10.8 List of Star Sensors............. 50 15.3 Ground Station and DSG Communication 77 10.9 List of Inertial Measurement Units.... 50 15.4 HGA Link Analysis............. 79 10.10Characteristics of the Chosen Thruster for 15.5 C&DH Components and Their Masses Habitat Module............... 51 and Power Budget............. 79 10.11SM Sensors................. 51 10.12Maneuvers Breakdown for Assembled Ve- 16.1 Cost Requirements on RFP........ 80 hicle..................... 52 16.2 Total Cost Breakdown of I-MARS Pro- 10.13Maneuvers Breakdown for SM....... 52 gram.................... 81 10.14Mass Breakdown of the ADCS Parts... 52 16.3 Lifetime Estimation of Each Component. 83 11.1 Habitat Trade Study............ 56 17.2 Ejection Specification........... 85 11.2 Characteristics of BEAM and Expected 17.1 Ariana's Risk and Mitigation....... 86 M-BEAM.................. 56 11.3 Habitats More Information........ 57 18.1 Power Budget................ 87 11.4 Input Parameters to SCALISS...... 58 18.2 Dry Mass Budget.............. 87 11.5 Input Parameters to ALiSSE......