Clinical Applications and Implications of Common and Founder Mutations in Indian Subpopulations
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Incidence of Inborn Errors of Metabolism by Expanded Newborn
Original Article Journal of Inborn Errors of Metabolism & Screening 2016, Volume 4: 1–8 Incidence of Inborn Errors of Metabolism ª The Author(s) 2016 DOI: 10.1177/2326409816669027 by Expanded Newborn Screening iem.sagepub.com in a Mexican Hospital Consuelo Cantu´-Reyna, MD1,2, Luis Manuel Zepeda, MD1,2, Rene´ Montemayor, MD3, Santiago Benavides, MD3, Hector´ Javier Gonza´lez, MD3, Mercedes Va´zquez-Cantu´,BS1,4, and Hector´ Cruz-Camino, BS1,5 Abstract Newborn screening for the detection of inborn errors of metabolism (IEM), endocrinopathies, hemoglobinopathies, and other disorders is a public health initiative aimed at identifying specific diseases in a timely manner. Mexico initiated newborn screening in 1973, but the national incidence of this group of diseases is unknown or uncertain due to the lack of large sample sizes of expanded newborn screening (ENS) programs and lack of related publications. The incidence of a specific group of IEM, endocrinopathies, hemoglobinopathies, and other disorders in newborns was obtained from a Mexican hospital. These newborns were part of a comprehensive ENS program at Ginequito (a private hospital in Mexico), from January 2012 to August 2014. The retrospective study included the examination of 10 000 newborns’ results obtained from the ENS program (comprising the possible detection of more than 50 screened disorders). The findings were the following: 34 newborns were confirmed with an IEM, endocrinopathies, hemoglobinopathies, or other disorders and 68 were identified as carriers. Consequently, the estimated global incidence for those disorders was 3.4 in 1000 newborns; and the carrier prevalence was 6.8 in 1000. Moreover, a 0.04% false-positive rate was unveiled as soon as diagnostic testing revealed negative results. -
Hereditary Galactokinase Deficiency J
Arch Dis Child: first published as 10.1136/adc.46.248.465 on 1 August 1971. Downloaded from Alrchives of Disease in Childhood, 1971, 46, 465. Hereditary Galactokinase Deficiency J. G. H. COOK, N. A. DON, and TREVOR P. MANN From the Royal Alexandra Hospital for Sick Children, Brighton, Sussex Cook, J. G. H., Don, N. A., and Mann, T. P. (1971). Archives of Disease in Childhood, 46, 465. Hereditary galactokinase deficiency. A baby with galactokinase deficiency, a recessive inborn error of galactose metabolism, is des- cribed. The case is exceptional in that there was no evidence of gypsy blood in the family concerned. The investigation of neonatal hyperbilirubinaemia led to the discovery of galactosuria. As noted by others, the paucity of presenting features makes early diagnosis difficult, and detection by biochemical screening seems desirable. Cataract formation, of early onset, appears to be the only severe persisting complication and may be due to the biosynthesis and accumulation of galactitol in the lens. Ophthalmic surgeons need to be aware of this enzyme defect, because with early diagnosis and dietary treatment these lens changes should be reversible. Galactokinase catalyses the conversion of galac- and galactose diabetes had been made in this tose to galactose-l-phosphate, the first of three patient (Fanconi, 1933). In adulthood he was steps in the pathway by which galactose is converted found to have glycosuria as well as galactosuria, and copyright. to glucose (Fig.). an unexpectedly high level of urinary galactitol was detected. He was of average intelligence, and his handicaps, apart from poor vision, appeared to be (1) Galactose Gackinase Galactose-I-phosphate due to neurofibromatosis. -
Fructose As an Endogenous Toxin
HEPATOCYTE MOLECULAR CYTOTOXIC MECHANISM STUDY OF FRUCTOSE AND ITS METABOLITES INVOLVED IN NONALCOHOLIC STEATOHEPATITIS AND HYPEROXALURIA By Yan (Cynthia) Feng A thesis submitted in the conformity with the requirements for the degree of Master of Science Graduate Department of Pharmaceutical Sciences University of Toronto © Copyright by Yan (Cynthia) Feng 2010 ABSTRACT HEPATOCYTE MOLECULAR CYTOTOXIC MECHANISM STUDY OF FRUCTOSE AND ITS METABOLITES INVOLVED IN NONALCOHOLIC STEATOHEPATITIS AND HYPEROXALURIA Yan (Cynthia) Feng Master of Science, 2010 Department of Pharmaceutical Sciences University of Toronto High chronic fructose consumption is linked to a nonalcoholic steatohepatitis (NASH) type of hepatotoxicity. Oxalate is the major endpoint of fructose metabolism, which accumulates in the kidney causing renal stone disease. Both diseases are life-threatening if not treated. Our objective was to study the molecular cytotoxicity mechanisms of fructose and some of its metabolites in the liver. Fructose metabolites were incubated with primary rat hepatocytes, but cytotoxicity only occurred if the hepatocytes were exposed to non-toxic amounts of hydrogen peroxide such as those released by activated immune cells. Glyoxal was most likely the endogenous toxin responsible for fructose induced toxicity formed via autoxidation of the fructose metabolite glycolaldehyde catalyzed by superoxide radicals, or oxidation by Fenton’s hydroxyl radicals. As for hyperoxaluria, glyoxylate was more cytotoxic than oxalate presumably because of the formation of condensation product oxalomalate causing mitochondrial toxicity and oxidative stress. Oxalate toxicity likely involved pro-oxidant iron complex formation. ii ACKNOWLEDGEMENTS I would like to dedicate this thesis to my family. To my parents, thank you for the sacrifices you have made for me, thank you for always being there, loving me and supporting me throughout my life. -
Mild Galactosemia General Overview
Mild Galactosemia General Overview Q. What is mild galactosemia? A. Mild galactosemia affects the way the body processes the sugar galactose, a component of milk and dairy products. Children with mild galactosemia may have some difficulty processing galactose. As a result, galactose and other by-products can build up in the bloodstream. Q. Is there only one form of galactosemia? A. No, there are several forms. Mild galactosemia is a term used to describe the non-severe forms that usually do not require treatment. Q. How does the body normally process galactose? A. The body normally converts galactose into glucose, which is used for energy. This conversion is made possible by several enzymes. One of these, named galactose-1-phosphate uridyltransferase (GALT), is most often associated with mild galactosemia. Q. What happens to galactose in a child with mild galactosemia? A. In a child with mild galactosemia, the body has some difficulty converting galactose to glucose. This can result in some build-up of galactose and other by-products. Q. What are the effects of having mild galactosemia if it is not treated? A. Most infants who have mild galactosemia have no effects, even without treatment. Depending on the level of enzyme activity and milk intake, some infants may show signs of poor feeding and digestion. Q. What is the treatment for mild galactosemia? A. Mild galactosemia usually does not require treatment. However, some infants may benefit from reduced milk intake. If a child with mild galactosemia has difficulty tolerating breast milk or regular formula, soy based formula can be substituted. -
Metabolic Liver Diseases Presenting As Acute Liver Failure in Children
R E V I E W A R T I C L E Metabolic Liver Diseases Presenting as Acute Liver Failure in Children SEEMA A LAM AND BIKRANT BIHARI LAL From Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India. Correspondence to: Prof Seema Alam, Professor and Head, Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi 110 070, India. [email protected] Context: Suspecting metabolic liver disease in an infant or young child with acute liver failure, and a protocol-based workup for diagnosis is the need of the hour. Evidence acquisition: Data over the last 15 years was searched through Pubmed using the keywords “Metabolic liver disease” and “Acute liver failure” with emphasis on Indian perspective. Those published in English language where full text was retrievable were included for this review. Results: Metabolic liver diseases account for 13-43% cases of acute liver failure in infants and young children. Etiology remains indeterminate in very few cases of liver failure in studies where metabolic liver diseases were recognized in large proportion. Galactosemia, tyrosinemia and mitochondrial disorders in young children and Wilson’s disease in older children are commonly implicated. A high index of suspicion for metabolic liver diseases should be kept when there is strong family history of consanguinity, recurrent abortions or sibling deaths; and history of recurrent diarrhea, vomiting, failure to thrive or developmental delay. Simple dietary modifications and/or specific management can be life-saving if instituted promptly. Conclusion: A high index of suspicion in presence of red flag symptoms and signs, and a protocol-based approach helps in timely diagnosis and prompt administration of life- saving therapy. -
Antenatal Diagnosis of Inborn Errors Ofmetabolism
816 ArchivesofDiseaseinChildhood 1991;66: 816-822 CURRENT PRACTICE Arch Dis Child: first published as 10.1136/adc.66.7_Spec_No.816 on 1 July 1991. Downloaded from Antenatal diagnosis of inborn errors of metabolism M A Cleary, J E Wraith The introduction of experimental treatment for Sample requirement and techniques used in lysosomal storage disorders and the increasing prenatal diagnosis understanding of the molecular defects behind By far the majority of antenatal diagnoses are many inborn errors have overshadowed the fact performed on samples obtained by either that for many affected families the best that can amniocentesis or chorion villus biopsy. For be offered is a rapid, accurate prenatal diag- some disorders, however, the defect is not nostic service. Many conditions remain at best detectable in this material and more invasive only partially treatable and as a consequence the methods have been applied to obtain a diagnos- majority of parents seek antenatal diagnosis in tic sample. subsequent pregnancies, particularly for those disorders resulting in a poor prognosis in terms of either life expectancy or normal neurological FETAL LIVER BIOPSY development. Fetal liver biopsy has been performed to The majority of inborn errors result from a diagnose ornithine carbamoyl transferase defi- specific enzyme deficiency, but in some the ciency and primary hyperoxaluria type 1. primary defect is in a transport system or Glucose-6-phosphatase deficiency (glycogen enzyme cofactor. In some conditions the storage disease type I) could also be detected by biochemical defect is limited to specific tissues this method. The technique, however, is inva- only and this serves to restrict the material avail- sive and can be performed by only a few highly able for antenatal diagnosis for these disorders. -
Galactosemia, Or Galactose Diabetes
EDITORIALS over the years can recall certain patients with whom usually described as glycogen but might be galactogen. each of these measures seemed to be successful. How- In the eyes the lenses often show lamellar or nuclear ever, with none of them is relief obtained with any sig- cataracts. nificant degree of uniformity; and in a situation in The cause of these pathologic cellular changes is de- which various agents appear curative, it is doubtful if batable. Mason and Turner5 blamed the lowering of any is specific. The last word in the management of dia- blood glucose. But the absence of similar cellular damage betic neuropathy remains to be said and the present in disorders such as glycogen storage disease and hyper- state of the problem presents a real challenge to all in- insulinism, associated with low blood sugar, makes this 6 7 terested in diabetes. hypothesis doubtful. Several authors have suggested - ALEXANDER MARBLE, M.D. that the elevated blood galactose was a direct cause of Joslin Clinic, Boston the pathologic cellular abnormalities. Some investigat- ors8- 9 have produced lens opacities in rats by feeding large amounts of galactose. Dam's experiments10 with the GALACTOSEMIA, OR GALACTOSE feeding of galactose to chicks led him to the conclusion DIABETES that galactose damaged the central nervous system. Craig 11 Galactosemia, sometimes called galactose diabetes, is and Maddock have described the production of lens caused by an inborn error of metabolism that leads to opacities by high galactose diet in rats, associated with inability of the body tissues to utilize galactose. The failure of growth, increased urinary nitrogen and amino- aciduria, but without hepatocellular changes. -
Review Galactokinase: Structure, Function and Role in Type II
CMLS, Cell. Mol. Life Sci. 61 (2004) 2471–2484 1420-682X/04/202471-14 DOI 10.1007/s00018-004-4160-6 CMLS Cellular and Molecular Life Sciences © Birkhäuser Verlag, Basel, 2004 Review Galactokinase: structure, function and role in type II galactosemia H. M. Holden a,*, J. B. Thoden a, D. J. Timson b and R. J. Reece c,* a Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (USA), Fax: +1 608 262 1319, e-mail: [email protected] b School of Biology and Biochemistry, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, (United Kingdom) c School of Biological Sciences, The University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, (United Kingdom), Fax: +44 161 275 5317, e-mail: [email protected] Received 13 April 2004; accepted 7 June 2004 Abstract. The conversion of beta-D-galactose to glucose unnatural sugar 1-phosphates. Additionally, galactoki- 1-phosphate is accomplished by the action of four en- nase-like molecules have been shown to act as sensors for zymes that constitute the Leloir pathway. Galactokinase the intracellular concentration of galactose and, under catalyzes the second step in this pathway, namely the con- suitable conditions, to function as transcriptional regula- version of alpha-D-galactose to galactose 1-phosphate. tors. This review focuses on the recent X-ray crystallo- The enzyme has attracted significant research attention graphic analyses of galactokinase and places the molecu- because of its important metabolic role, the fact that de- lar architecture of this protein in context with the exten- fects in the human enzyme can result in the diseased state sive biochemical data that have accumulated over the last referred to as galactosemia, and most recently for its uti- 40 years regarding this fascinating small molecule ki- lization via ‘directed evolution’ to create new natural and nase. -
Severe Child Form of Primary Hyperoxaluria Type 2
Konkoľová et al. BMC Medical Genetics (2017) 18:59 DOI 10.1186/s12881-017-0421-8 CASE REPORT Open Access Severe child form of primary hyperoxaluria type 2 - a case report revealing consequence of GRHPR deficiency on metabolism Jana Konkoľová1,2*, Ján Chandoga1,2, Juraj Kováčik3, Marcel Repiský2, Veronika Kramarová2, Ivana Paučinová3 and Daniel Böhmer1,2 Abstract Background: Primary hyperoxaluria type 2 is a rare monogenic disorder inherited in an autosomal recessive pattern. It results from the absence of the enzyme glyoxylate reductase/hydroxypyruvate reductase (GRHPR). As a consequence of deficient enzyme activity, excessive amounts of oxalate and L-glycerate are excreted in the urine, and are a source for the formation of calcium oxalate stones that result in recurrent nephrolithiasis and less frequently nephrocalcinosis. Case presentation: We report a case of a 10-month-old patient diagnosed with urolithiasis. Screening of inborn errors of metabolism, including the performance of GC/MS urine organic acid profiling and HPLC amino acid profiling, showed abnormalities, which suggested deficiency of GRHPR enzyme. Additional metabolic disturbances observed in the patient led us to seek other genetic determinants and the elucidation of these findings. Besides the elevated excretion of 3-OH-butyrate, adipic acid, which are typical marks of ketosis, other metabolites such as 3- aminoisobutyric acid, 3-hydroxyisobutyric acid, 3-hydroxypropionic acid and 2-ethyl-3-hydroxypropionic acids were observed in increased amounts in the urine. Direct sequencing of the GRHPR gene revealed novel mutation, described for the first time in this article c.454dup (p.Thr152Asnfs*39) in homozygous form. The frequent nucleotide variants were found in AGXT2 gene. -
The Interrelationships Between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds
Nutrients 2015, 7, 7312-7331; doi:10.3390/nu7095340 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Review The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds Nissim Silanikove 1,*, Gabriel Leitner 2 and Uzi Merin 3 1 Biology of Lactation Laboratory, Institute of Animal Science, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel 2 National Mastitis Reference Center, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel; E-Mail: [email protected] 3 Department of Food Quality and Safety, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +972-8948-4436; Fax: +972-8947-5075. Received: 24 June 2015 / Accepted: 26 August 2015 / Published: 31 August 2015 Abstract: Humans learned to exploit ruminants as a source of milk about 10,000 years ago. Since then, the use of domesticated ruminants as a source of milk and dairy products has expanded until today when the dairy industry has become one of the largest sectors in the modern food industry, including the spread at the present time to countries such as China and Japan. This review analyzes the reasons for this expansion and flourishing. As reviewed in detail, milk has numerous nutritional advantages, most important being almost an irreplaceable source of dietary calcium, hence justifying the effort required to increase its consumption. On the other hand, widespread lactose intolerance among the adult population is a considerable drawback to dairy-based foods consumption. -
Association of Escherichia Coli Sepsis and Galactosemia in Neonates
J Am Board Fam Pract: first published as 10.3122/jabfm.5.1.89 on 1 January 1992. Downloaded from Association Of Escherichia coli Sepsis And Galactosemia In Neonates Phyllis Hoeflich Barr, D.O. Family physicians frequently care for neonates Follow-up care has been carried out in the who have jaundice and sepsis. There is a strong Department of Family Practice of the Naval association between serious infection and Hospital, Camp Pendleton, California, and the galactosemia in infants. A case is presented de Pediatric Metabolic Clinic of University of Cali scribing a neonate with jaundice and sepsis caused fornia, San Diego. Electrophoresis subsequently by Escherichia coli who was found to be galacto showed a low galactose-I-phosphate uridyl trans semic in the first week of life. The symptoms of ferase level (0.1 U/g hemoglobin; normal range galactosemia are discussed together with bio 18.5-28.5 U/g hemoglobin) as the cause of the chemical abnormalities leading to an increased galactosemia. Well-baby checkups at 2 and 4 frequency of infection and sepsis in these infants. months have shown her to be a vigorous infant in the 25th to 50th percentile for weight and Case Report length and the 50th percentile for circumference. A 20-year-old woman, gravida 2, para 1, abortus Bilateral small cataracts developed but are ex 0, gave birth to a 3800-g (8 lb, 3 oz) girl by pected to resolve on the lactose-free diet. The spontaneous vaginal delivery. Her prenatal course adequacy of the dietary therapy has been assessed was unremarkable. -
Inability to Convert Galactose to Glucose 2 Galactosemia
1 Galactosemia Inability to convert galactose to glucose 2 Galactosemia Inability to convert galactose to glucose 3 Galactosemia Inability to convert galactose to glucose Inheritance: ARabb. 4 Galactosemia Inability to convert galactose to glucose Inheritance: AR 5 Galactosemia Inability to convert galactose to glucose Inheritance: AR Results from a defect in one of the three# enzymes involved in galactose metabolism 6 Galactosemia Inability to convert galactose to glucose Inheritance: AR Results from a defect in one of the three enzymes involved in galactose metabolism 7 Galactosemia Inability to convert galactose to glucose Inheritance: AR Results from a defect in one of the three enzymes involved in galactose metabolism Classic galactosemia: most vs most vs Mostleast common and mostleast severe form 8 Galactosemia Inability to convert galactose to glucose Inheritance: AR Results from a defect in one of the three enzymes involved in galactose metabolism Classic galactosemia: Most common and most severe form 9 Galactosemia Inability to convert galactose to glucose Inheritance: AR Results from a defect in one of the three enzymes involved in galactose metabolism Classic galactosemia: Most common and most severe form Caused by defect in the uridyltransferasesomething-something-ase enzyme 10 Galactosemia Inability to convert galactose to glucose Inheritance: AR Results from a defect in one of the three enzymes involved in galactose metabolism Classic galactosemia: Most common and most severe form Caused