Plant Biodiversity (PTS 251)

Total Page:16

File Type:pdf, Size:1020Kb

Plant Biodiversity (PTS 251) Plant Biodiversity PTS 251 B.Sc. B.Ed. Semester – IV Course Instructor Dr. Gautam Kumar Gymnosperm ‘Gymnosperm’ comes from the composite Greek ‘gymnos’ means naked and ‘sperma’ means seed, literally meaning ‘naked seeds’. Gymnosperms are flowerless plants that produce cones and seeds. Seeds are not encased within an ovary. The unenclosed condition of their seeds (called ovules in their unfertilized state). They seeds sit exposed on the surface of leaf-like structures called bracts. Gymnosperms are vascular plants of the subkingdom Embyophyta and include conifers, cycads, ginkgoes, and gnetophytes. Gymnosperms are abundant in temperate forest and boreal forest biomes with species that can tolerate moist or dry conditions. Gymnosperms are believed to be the first vascular plants to inhabit land appearing in the Triassic Period around 245-208 million years ago. The development of a vascular system capable of transporting water throughout the plant enabled gymnosperm land colonization. Gymnosperm wood is considered softwood, unlike the hardwood of some angiosperms. Today, there over one thousand species of gymnosperms belonging to four main divisions: i) Coniferophyta ii) Cycadophyta Divisions iii) Ginkgophyta iv) Gnetophyta Coniferophyta The Coniferophyta division contains conifers, which have the greatest variety of species among gymnosperms. Most conifers are evergreen (retain their leaves throughout the year) and include some of the largest, tallest and oldest trees on the planet. Examples Pines, Sequoias, Firs, Hemlock, and Spruces. Conifers are an important economic source of timber and products, such as paper, that are developed from wood. The word conifer means "cone-bearer," a distinct characteristic common to conifers. Cones house the male and female reproductive structures of conifers. Most conifers are monoecious, meaning that both male and female cones can be found on the same tree. Another readily identifiable trait of conifers is their needle-like leaves. Different conifer families, such as Pinaceae (pines) and Cupressaceae (cypresses), are distinguished by the type of leaves present. Pinus sp. (Pine) have single needle-like leaves or needle-leaf clutters along the stem. Pinus sp. Cupressus sp. (Cypress) Cupressus sp. (Cypress) have flat, scale-like leaves along the stems. Agathis sp.have thick, elliptical leaves. Nageia sp. have Agathis sp. Nageia sp. broad, flat leaves. Conifers are conspicuous members of the taiga forest biome and have adaptations for life in the cold environment of boreal forests. Taiga forest biome The tall, triangular shape of the trees allows snow to fall from the branches more readily and prevents them from breaking under the weight of the ice. Triangular shape of conifers The needle-leaf conifers also have a waxy coat on the leaf surface to help prevent water loss in the dry climate. Needle-leaf of conifers Cycadophyta The Cycadophyta division of gymnosperms include cycads. Cycads are found in tropical forests and subtropical regions. These evergreen plants have a feather-like leaf and long stems that spread the large leaves out over the thick, woody trunk. Cycas sp. Though cycads may resemble palm trees but they are not related. Cycads can live for many years and have a slow growth process eg. King Sago palm, Unlike many conifers, cycad trees either produce only male cones (produce pollen) or female cones (produce ovules). Female cone-producing cycads will only produce seeds if a male is within the vicinity. Female cone of Cycas sp. Cycads rely mainly on insects for pollination, and animals aid in dispersal of their large, colorful seeds. Cycad seeds can be dangerous to pets and humans if ingested Ginkgophyta Ginkgo biloba is the only surviving member of the Ginkgophyta and therefore called living fossil. Today, naturally-growing ginkgo plants are exclusive to China. Ginkgoes can live for thousands of years and are characterized by fan- shaped, deciduous leaves that turn yellow in autumn. Ginkgo biloba Ginkgo biloba are quite large, with the tallest trees reaching 160 feet. Older trees have thick trunks and deep roots. Ginkgoes grow in well sunlit areas that receive lots of water and have plenty of soil drainage. Like cycads, Ginkgo plants produce either male or female cones and have sperm cells that use flagella to swim toward the egg in the female ovule. These durable trees are fire- resistant, pest- resistant and disease- resistant. Ginkgo male cone They produce chemicals, including several flavinoids and terpenes with antioxidant, anti-inflammatory and antimicrobial properties. Ginkgo female cone Gnetophyta Gnetophyta has a small number of species (65) found within three genera: Ephedra, Gnetum and Welwitschia. Ephedra sp. Many of the species from the genus Ephedra are shrubs that can be found in desert regions of the Americas or in the high, cool regions of the Himalayan mountains in India. Ephedra sp. Certain Ephedra species have medicinal properties and are the source of the decongestant drug ephedrine. Ephedra species have slender stems and scale-like leaves. Ripe female cones of Ephedra sp. Gnetum sp. Gnetum species contain some shrubs and trees, but most are woody vines that climb around other plants. They inhabit tropical rain forests and have broad, flat leaves that resemble the leaves of flowering plants. Female cone of Gnetum sp. with seed The male and female reproductive cones are contained on separate trees and often resemble flowers, though they are not. Male cone of Gnetum sp. The vascular tissue structure of these plants is also similar to that of flowering plants. Seed of Gnetum sp. Welwitschia sp. Welwitschia has a single species, W. mirabilis. These plants live only in the African desert of Namibia. Welwitschia sp. They are very unusual in that they have a large stem that remains close to the ground, two large arching leaves that split into other leaves as they grow, and a large, deep taproot. This plant can withstand the extreme heat of the desert with highs of 50°C as well as the lack of water (1-10 cm yearly). Male cones are brightly coloured and both male and female cones contain nectar to attract insects Male cones of Welwitschia sp. Life cycle of gymnosperms In the gymnosperm life cycle, plants alternate between a sexual and an asexual phase. This type of life cycle is known as alternation of generations. Gamete production occurs in the sexual phase or gametophyte generation of the cycle. Spores are produced in the asexual phase or sporophyte generation. Unlike in non-vascular plants, the dominant phase of the plant life cycle for vascular plants is the sporophtyic generation. In gymnosperms, the plant sporophyte is recognized as the bulk of the plant itself, including roots, leaves, stems and cones. The cells of the plant sporophyte are diploid and contain two complete sets of chromosomes. The sporophyte is responsible for the production of haploid spores through the process of meiosis. Containing one complete set of chromosomes, spores develop into haploid gametophytes. The plant gametophytes produce male and female gametes which unite at pollination to form a new diploid zygote. The zygote matures into a new diploid sporophyte, thus completing the cycle. Gymnosperms spend most of their life cycle in the sporophyte phase and the gametophyte generation is totally dependent upon the sporophyte generation for survival. Reproduction in gymnosperms Female gametes (megaspores) are produced in gametophyte structures called archegonia located in ovulate cones. Male gametes (microspores) are produced in pollen cones and develop into pollen grains. Female cone Some gymnosperm species have male and female cones on the same tree (monoecious), while others have separate male or female cone producing trees (dioecious). Male cone For pollination, gametes must come into contact with one another, which typically occurs via wind, animal or insect transfer. Fertilization in gymnosperms occurs when pollen grains contact the female ovule and germinate. Sperm cells make their way to the egg inside the ovule and fertilize the egg. In conifer and gnetophytes, sperm cells have no flagella and must reach the egg via the formation of a pollen tube. In cycads and ginkgoes, the flagellated sperm swim toward the egg for fertilization. Upon fertilization, the resulting zygote develops within the gymnosperm seed and forms a new sporophyte. Cycas sp. Kingdom: Plantae Clade: Tracheophytes Division: Cycadophyta Class: Cycadopsida Order: Cycadales Suborder: Cycadineae Family: Cycadaceae Genus: Cycas Cycas sp. is the only genus recognised in the family Cycadaceae. Cycas is a palm-like, evergreen plant. The plants grow under xerophytic conditions. Plant body consists of a columnar aerial trunk with a crown of pinnately compound leaves as its top. Distribution of Cycas Cycas is distributed in Japan, Australia, India, Indochina, China, Mauritius, Africa, Nepal, Bangladesh, Sri Lanka and Myanmar. In India, Cycas grows naturally in Orissa, Assam, Meghalaya, Tamil Nadu, Karnataka and Andaman and Nicobar Islands. Cycas is represented by 15 species. According to Willis (1966) there are 20 species of the genus. Schuster (1932) recognized only 8 species, mentioning for the rest as the forms, varieties or sub-species of the other species. Besides Cycas circinalis, C. beddomei, C. rumphii and C. pectinata, which occur in the wild state in India. C. revoluta and C. siamensis are such species which are cultivated commonly in the Indian gardens. Cycas revoluta is the most commonly cultivated species of the Indian gardens. Two types of roots are present in Cycas: i) Normal tap roots forming a tap root system ii) Coralloid roots i) Normal tap-roots Normal tap-roots are positively geotropic, grow deep into the soil and generally possess no root hairs. Their function is to fix the plant in the soil and to absorb water and other minerals. From the normal roots some lateral branches are developed near the ground surface. Normal tap-roots in Cycas sp. ii) Coralloid roots These lateral roots get infected with some bacteria, fungi and algae, and are called coralloid roots.
Recommended publications
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • Bowenia Serrulata (W
    ResearchOnline@JCU This file is part of the following reference: Wilson, Gary Whittaker (2004) The Biology and Systematics of Bowenia Hook ex. Hook f. (Stangeriaceae: Bowenioideae). Masters (Research) thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/1270/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/1270/ The Biology and Systematics of Bowenia Hook ex. Hook f. (Stangeriaceae: Bowenioideae) Thesis submitted by Gary Whittaker Wilson B. App. Sc. (Biol); GDT (2º Science). (Central Queensland University) in March 2004 for the degree of Master of Science in the Department of Tropical Plant Science, James Cook University of North Queensland STATEMENT OF ACCESS I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and by microfilm or other photographic means, and allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: ‘In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author, and to make proper written acknowledgment for any assistance which I have obtained from it.’ ………………………….. ……………… Gary Whittaker Wilson Date DECLARATION I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text.
    [Show full text]
  • Chemical Element Concentrations of Cycad Leaves: Do We Know Enough?
    horticulturae Review Chemical Element Concentrations of Cycad Leaves: Do We Know Enough? Benjamin E. Deloso 1 , Murukesan V. Krishnapillai 2 , Ulysses F. Ferreras 3, Anders J. Lindström 4, Michael Calonje 5 and Thomas E. Marler 6,* 1 College of Natural and Applied Sciences, University of Guam, Mangilao, GU 96923, USA; [email protected] 2 Cooperative Research and Extension, Yap Campus, College of Micronesia-FSM, Colonia, Yap 96943, Micronesia; [email protected] 3 Philippine Native Plants Conservation Society Inc., Ninoy Aquino Parks and Wildlife Center, Quezon City 1101, Philippines; [email protected] 4 Plant Collections Department, Nong Nooch Tropical Botanical Garden, 34/1 Sukhumvit Highway, Najomtien, Sattahip, Chonburi 20250, Thailand; [email protected] 5 Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL 33156, USA; [email protected] 6 Western Pacific Tropical Research Center, University of Guam, Mangilao, GU 96923, USA * Correspondence: [email protected] Received: 13 October 2020; Accepted: 16 November 2020; Published: 19 November 2020 Abstract: The literature containing which chemical elements are found in cycad leaves was reviewed to determine the range in values of concentrations reported for essential and beneficial elements. We found 46 of the 358 described cycad species had at least one element reported to date. The only genus that was missing from the data was Microcycas. Many of the species reports contained concentrations of one to several macronutrients and no other elements. The cycad leaves contained greater nitrogen and phosphorus concentrations than the reported means for plants throughout the world. Magnesium was identified as the macronutrient that has been least studied.
    [Show full text]
  • Sex Change in Cycads
    Palms& CycadsNo 76 July - September2002 1 Sex Change in Cycads Rov Osbornet and Root Gorelick2 tP O Box 244, Burpengary, Queensland,4505Australia :Department of Biology, Arizona State University, Tbmpe,AZ 85287-1501, U.S.A. Introduction Trees", also mentionstwo cycad sex changeincidents: a fernalespecirnen of Becausecycads are strictly and Cycascircinalis fagain,rlore probably C. unifonnly dioecious,occasional early rumphiil that changedto male after being reportsof sex changein theseplants were mechanicallydarnaged fthis rnay be the largely discountedas erroneous(Mehra samecase as referredto by Charnberlain]. 1986).lndeed, there have been some claims and a male of the salnespecies which of sexchanges for which otherexplanations produceda fernalecone after severefrost are rrore appropriate.Nevertheless, exposure. attentionmust be paid to the increasing A detailedaccount of a particularcycad numberof apparentlygenuine cases of sex sex reversalis given by Van Wyk & changesthat have been reportedover the Claassen( l98l) andrelates to oneof several past70 years.In this articlewe sutnmarise specirnens of Encephalartos incidentsof 30 cycad sex reversals, umbeluziensisgrowing in Dr Claassen's including several previously un- garden in Pretoria, South Africa. The documentedcases. We alsomention details particularspecimen produced a malecone of some"false" cases and suggest possible in 1970,but a fernalecone in l9l9 and controlling mechanisms. A table thereafter.As theplant in questionwas in a summarisesthe known casesof cycad sex rlore exposedsituation that others in the change,and a bibliographyis provided. salnegarden, it is speculatedthat a freak cold weatherspell in 1972may haveinitiated Know,n cases o.f'sex change - listed the change. chronologicalllt "Encephalartos",the journal of the Cycad Society of South Africa, has The earliestreference to sex changein publicisednurlerous incidents of cycadsex cycadsis that given by Schuster(1932) change.These are summarised in this and who tells of a Cvc'asrevoluta plant that the following paragraph.H.J.
    [Show full text]
  • Cycas Revoluta1
    Fact Sheet FPS-162 October, 1999 Cycas revoluta1 Edward F. Gilman2 Introduction The palm-like King Sago has a short, dark brown, unbranching trunk topped with graceful, arching, dark green, feathery leaves, two to three feet long (Fig. 1). King Sago is not a palm tree. It will eventually reach to about eight feet tall, but grows about one or two inches per year. The individual leaflets each end in a sharp tip. Although very slow-growing, King Sago is much prized for its tropical effect and easy care and makes an excellent specimen or container plant. It is easy to grow as a house plant. General Information Scientific name: Cycas revoluta Pronunciation: SYE-kus rev-voe-LOO-tuh Common name(s): King Sago Family: Cycadaceae Plant type: shrub USDA hardiness zones: 8B through 11 (Fig. 2) Planting month for zone 8: year round Planting month for zone 9: year round Figure 1. King Sago. Planting month for zone 10 and 11: year round Origin: not native to North America Uses: container or above-ground planter; border; mass Description planting; accent; suitable for growing indoors Height: 3 to 10 feet Availablity: somewhat available, may have to go out of the Spread: 4 to 8 feet region to find the plant Plant habit: palm Plant density: moderate Growth rate: slow Texture: fine 1.This document is Fact Sheet FPS-162, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October 1999. Please visit the EDIS web site at http://edis.ifas.ufl.edu.
    [Show full text]
  • Comparative Biology of Cycad Pollen, Seed and Tissue - a Plant Conservation Perspective
    Bot. Rev. (2018) 84:295–314 https://doi.org/10.1007/s12229-018-9203-z Comparative Biology of Cycad Pollen, Seed and Tissue - A Plant Conservation Perspective J. Nadarajan1,2 & E. E. Benson 3 & P. Xaba 4 & K. Harding3 & A. Lindstrom5 & J. Donaldson4 & C. E. Seal1 & D. Kamoga6 & E. M. G. Agoo7 & N. Li 8 & E. King9 & H. W. Pritchard1,10 1 Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK; e-mail: [email protected] 2 The New Zealand Institute for Plant & Food Research Ltd, Private Bag 11600, Palmerston North 4442, New Zealand; e-mail [email protected] 3 Damar Research Scientists, Damar, Cuparmuir, Fife KY15 5RJ, UK; e-mail: [email protected]; [email protected] 4 South African National Biodiversity Institute, Kirstenbosch National Botanical Garden, Cape Town, Republic of South Africa; e-mail: [email protected]; [email protected] 5 Nong Nooch Tropical Botanical Garden, Chonburi 20250, Thailand; e-mail: [email protected] 6 Joint Ethnobotanical Research Advocacy, P.O.Box 27901, Kampala, Uganda; e-mail: [email protected] 7 De La Salle University, Manila, Philippines; e-mail: [email protected] 8 Fairy Lake Botanic Garden, Shenzhen, Guangdong, People’s Republic of China; e-mail: [email protected] 9 UNEP-World Conservation Monitoring Centre, Cambridge, UK; e-mail: [email protected] 10 Author for Correspondence; e-mail: [email protected] Published online: 5 July 2018 # The Author(s) 2018 Abstract Cycads are the most endangered of plant groups based on IUCN Red List assessments; all are in Appendix I or II of CITES, about 40% are within biodiversity ‘hotspots,’ and the call for action to improve their protection is long- standing.
    [Show full text]
  • 35 Ideal Landscape Cycads
    3535 IdealIdeal LandscapeLandscape CycadsCycads Conserve Cycads by Growing Them -- Preservation Through Propagation Select Your Plant Based on these Features: Exposure: SunSun ShadeShade ☻☻ ColdCold☻☻ Filtered/CoastalFiltered/Coastal SunSun ▲▲ Leaf Length and Spread: Compact, Medium or Large? Growth Rate and Ultimate Plant Size Climate: Subtropical, Mediterranean, Temperate? Dry or Moist? Leaves -- Straight or Arching? Ocean-Loving, Salt-Tolerant, Wind-Tolerant CeratozamiaCeratozamiaCeratozamiaCeratozamia SpeciesSpeciesSpeciesSpecies ☻Shade Loving ☻Cold TolerTolerantant ▲Filtered/Coastal Sun 16 named + several undescribed species Native to Mexico, Guatemala & Belize Name originates from Greek ceratos (horned), and azaniae, (pine cone) Pinnate (feather-shaped) leaves, lacking a midrib, and horned, spiny cones Shiny, darker green leaves arching or upright, often emerging red or brown Less “formal” looking than other cycads Prefer Shade ½ - ¾ day, or afternoon shade Generally cold-tolerant CeratozamiaCeratozamia ---- SuggestedSuggested SpeciesSpecies ☻Shade Loving ☻Cold TolerTolerantant ▲Filtered/Coastal Sun Ceratozamia mexicana Tropical looking but cold-tolerant, native to dry mountainous areas in the Sierra Madre Mountains (Mexican Rockies). Landscape specimen works well with water features, due to arching habit. Prefers shade, modest height, with a spread of up to 10 feet. Trunk grows to 2 feet tall. Leaflets can be narrow or wider (0.75-2 inches). CeratozamiaCeratozamia ---- SuggestedSuggested SpeciesSpecies ☻Shade Loving ☻Cold TolerTolerantant ▲Filtered/Coastal Sun Ceratozamia latifolia Rare Ceratozamia named for its broad leaflets. Native to cloud forests of the Sierra Madre mountains of Mexico, underneath oak trees. Emergent trunk grows to 1 foot tall, 8 inches in diameter. New leaves emerge bronze, red or chocolate brown, hardening off to bright green, semiglossy, and grow to 6 feet long. They are flat lance-shaped, asymmetric, and are broadest above middle, growing to 10 inches long and 2 inches wide.
    [Show full text]
  • Proliferated Megasporangiate Strobili of Zamia Furfuracea (Zamiaceae, Cycadales) and Its Possible Evolutionary Implications for the Origin of Cycad-Megasporophylls
    Palaeodiversity 6: 135–147; Stuttgart, 30 December 2013. 135 Proliferated megasporangiate strobili of Zamia furfuracea (Zamiaceae, Cycadales) and its possible evolutionary implications for the origin of cycad-megasporophylls VEIT MARTIN DÖRKEN & BRIGITTE ROZYNEK Abstract At a 30-years-old individual of Zamia furfuracea (Zamiaceae, Cycadales) cultivated in the Botanic Garden Bo- chum (Germany), several proliferated megasporangiate strobili were found. The morphology of normal and prolif- erated strobili was compared. Within the proliferated strobili the sequence of megasporophylls, cataphylls, tropho- phyll-like leaves, followed again by a flush of cataphylls, was similar to those developed at the stems of extant Cycas species. However, all proliferated megasporangiate strobili were sterile. Within the proliferated strobili the pinnate trophophyll-like leaves that were replacing the terminal megasporophylls can be regarded as an atavism possibly reflecting the primitive character of megasporophylls in cycads. Thus, the results of the morphological examinations and also the comparison with fossil taxa may deliver new data supporting the idea that pinnate cycad-megasporo- phylls are a plesiomorphic feature within cycads. Keywords: Zamia, Cycadales, strobilus, megasporophyll, proliferation. 1. Introduction often wedge-shaped with a hexagonal outer face. In some species they have one or two distal spine-like appendages. Due to the morphology of megasporangiate strobili, me- Each megasporophyll bears only two ovules, which are gasporophylls and the attachment of ovules, the systemat- developed deeply within the strobilus. The micropyles are ics among extant cycads is still debated. Some authors sug- pointing towards the axis of the strobilus. gest a concept composing of three families: Cycadaceae, In contrast with the Zamiaceae, among the Cycadaceae Stangeriaceae, and Zamiaceae (e.g.
    [Show full text]
  • Strictly Dioecious Plant Vegetative
    Bhagalpur National College, Bhagalpur ( A Constituent unit of Tilka Manjhi Bhagalpur University, Bhagalpur) PPT Presentation for B.Sc. I- CYCAS: Structure, Reproduction and Life cycle Presented by - Dr. Amit Kishore Singh Department of Botany B.N. College, Bhagalpur Distribution and Occurence . It includes 20 species. Occurs wild or cultivated in tropical and sub-tropical regions. South of Eastern Hemisphere • e.g. S. Japan, India, China, N. Australia, E. Coasts of Africa, Myanmar, Bangladesh, Mauritius, Nepal, etc. It is evergreen plant in India represented with 6 species- Cycas revoluta, C. pectinata, C. siamensis, C. beddomei, C. rumphi and C. Circinali. The plants grow in xerophytic conditions. It is cultivated as ornamental plant in the garden. Cycas is called a living fossil. Cycas revoluta (sago palm) Cycas rumphi (false sago) Cycas circinalis (queen sago) Cycas siamensis Cycas pectinata Cycas beddomei Morphology Sporophyte is dioecious i.e. male and female plants are separate. Plant body is differentiated into roots, stem and leaves. Roots • Roots are of two types – normal root Stem and coralloid roots. • Root hairs and rot cap are absent. Root • Normal roots helps in absorption and anchorage. • Coralloid roots helps in nitrogen fixation. Stem is erect, columnar, woody and unbranched, covered with alternate whorls of leaf bases of foliage and scaly leaves. Foliage or assimilatory leaves (1-3 mm, green, pinnately compund, photosynthetic Leaves are dimorphic – in nature) Scaly leaves or cataphylls (small, dry, brown, triangular leaves covered with ramenta, photosynthetic in nature, protect the stem apex) Cycas leaf Internal structure T. S of coralloid roots 1. It is circular in outline and the T.
    [Show full text]
  • Comparative Anatomy of Leaflets of Zamia Acuminata and Z
    Comparative anatomy of leaflets of Zamia acuminata and Z. pseudomonticola (Zamiaceae) in Costa Rica Rafael Acuña-Castillo & Walter Marín-Méndez Escuela de Biología, Centro de Investigación en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, San José, Costa Rica. P.O. Box 11501-2060; [email protected], [email protected] Received 19-III-2012. Corrected 20-VIII-2012. Accepted 24-IX-2012. Abstract: The genus Zamia is morphologically and ecologically the most diverse of the order Cycadales. Throughout its history this genus has been restricted to the New World and is presently almost entirely restricted to the Neotropics. Unusual anatomical traits of the leaflets, such as the sunken stomata and thick cuticle, are common in this and related genera. The objective of this research was to study and compare the leaflet anatomy of Zamia acuminata and Z. pseudomonticola and establish possible phylogenetic relationships between the anatomical traits and the near relatives of these species. The leaf material was obtained from living plants and then processed for electron microscopy study. We found that both species are very similar to each other and to Z. fairchildiana, and that they share several unusual traits with other species of the genus, such as the parenchyma morphology, the spatial distribution of tissues between the veins and the stomata morphology. The main differ- ences between these species were seen in their fiber clusters and in the abundance of trichome basal cells on the epidermis. The anatomical similarities between the three species could be the result of their close phylogenetic relationship and the divergences between them could be the result of recent speciation during the Pleistocene, resulting from geological changes in Southern Costa Rica.
    [Show full text]
  • Cycad Aulacaspis Scale
    CycadCycad AulacaspisAulacaspis ScaleScale InvasiveInvasive PestPest withwith ExtinctionExtinction Potential!Potential! Photo: Anne Brooke, Guam National Wildlife Refuge Jody Haynes Montgomery Botanical Center, 11901 Old Cutler Road, Miami, FL 33156 USA [email protected] GeneralGeneral CycadCycad InformationInformation OrderOrder:: CycadalesCycadales FamiliesFamilies:: BoweniaceaeBoweniaceae,, Cycadaceae,Cycadaceae, Stangeriaceae,Stangeriaceae, ZamiaceaeZamiaceae ExtantExtant speciesspecies:: 302302 currentlycurrently recognizedrecognized Photo: Dennis Stevenson DistributionDistribution:: PantropicalPantropical ConservationConservation statusstatus:: CycadsCycads representrepresent oneone ofof thethe mostmost threatenedthreatened plantplant groupsgroups worldwide;worldwide; >50%>50% listedlisted asas threatenedthreatened oror endangeredendangered Photo: Tom Broome Photo: Mark Bonta AulacaspisAulacaspis yasumatsuiyasumatsui TakagiTakagi OrderOrder:: Hemiptera/HomopteraHemiptera/Homoptera FamilyFamily:: DiaspididaeDiaspididae CommonCommon namesnames:: OfficialOfficial cycadcycad aulacaspisaulacaspis scalescale (CAS)(CAS) OtherOther AsianAsian cycadcycad scale,scale, ThaiThai scale,scale, snowsnow scalescale NativeNative distributiondistribution:: AndamanAndaman IslandsIslands toto Vietnam,Vietnam, W. Tang, USDA-APHIS-PPQ includingincluding ThailandThailand andand probablyprobably Cambodia,Cambodia, Laos,Laos, peninsularpeninsular Malaysia,Malaysia, Myanmar,Myanmar, southernmostsouthernmost China,China, andand possiblypossibly
    [Show full text]
  • Key Concepts -- Lecture 9 (Cycads, Ginkgos, and Gnetophytes) IB168: Spr 2006
    Key Concepts -- Lecture 9 (cycads, ginkgos, and gnetophytes) IB168: Spr 2006 I. Cycads -- Monophyletic group, variously recognized as division (Cycadophyta), subdivision (Cycadicae), or order (Cycadales). Another example of arbitrary ranks in taxonomy. Most species extinct: Only about 185 spp. in 10--11 genera and 2 families, found in tropical/subtropical environments. Only one species in U.S. (Florida and Georgia): Zamia integrifolia. Known from fossils since early Permian (late Paleozoic), ca. 230 million years ago. Especially rich in diversity during Jurassic, the "Age of Dinosaurs." A. Palm-like or fern-like in appearance: 1. Woody stem (subterranean or aerial), with leaves at apex of unbranched trunk (unless damaged, then may branch). Loss of branching a likely a cycad synapomorphy. 2. Leaves pinnately-compound (once-compound in most, except Bowenia, which has twice- compound leaves); persistent leaf bases (similarity ends here), partial circinate vernation in Cycadaceae (Cycas; only leaflets inrolled, not midrib). Herbage poisonous (glycosides) called cyasins (paralytic to livestock) B. Roots 1. Coralloid and upwardly growing, in part - Symbiotic association with blue-green bacteria (Nostoc &/or Anabaena) in special upwardly growing, coralloid roots. Bacteria constitute a green band in cortex of coralloid roots - FIX N2. Only gymnosperm known to have association with nitrogen fixing organism. Synapomorphy for cycads. 2. Contractile roots -- Can pull plant toward soil; a protective response to stress. C. Reproductive morphology 1. Dioecious (unusual condition in conifers, although prevalent in Podocarpaceae, Taxaceae, and Araucaria); that is, with different plants bearing pollen vs seeds; sex change reported under stress. 2. Seeds borne on megasporophylls (that is, on leaf homologues; unlike conifers, wherein seeds are borne on scales that each equate to a branch, rather than a leaf).
    [Show full text]