Amniotic Fluid Naturally Contains the Necessary “Ingredients” for Developing an Extracellular Matrix That Can Repair Damaged Tissue

Total Page:16

File Type:pdf, Size:1020Kb

Amniotic Fluid Naturally Contains the Necessary “Ingredients” for Developing an Extracellular Matrix That Can Repair Damaged Tissue PalinGenAmniotic SportFlow Fluid - Supporting Scientific Rationale Russell Health, Inc. Mechanism of Action for AmnioticPalinGen FluidSportFlow Amniotic fluid naturally contains the necessary “ingredients” for developing an extracellular matrix that can repair damaged tissue. Amniotic fluid contains a number of components that are imperative in the development of this foundational extracellular matrix, such as collagen, which forms fibrils that provide structure for tissues like ligaments, tendons, and skin. In addition to collagen, cytokines, chemokines, and hyaluronan in amniotic fluid work together within the matrix to regulate inflammation, maximize communication, and initiate cell regrowth within the tissue. An Amniotic Fluid Injection is an injectable scaffold that utilizes a naturally formed mixture of bioactive molecules and solidifiable precursors found in pure amniotic fluid. By injecting Amniotic Fluid into defected joints or soft tissues, a newAmniotic 3D structure of regenerated healthy tissue is created. This entire process generally takes 3-6 weeks. References 1.Technology-Insight-Adult-Mesenchymal-Stem-Cells-for-Osteoarthritis-Therapy-Noth ​ 2. Potential use of the human amniotic membrane as a scaffold in human articular cartilage repair ​ 3. Amniotic Fluid: Not Just Fetal Urine Anymore. Mark A Underwood MD1, William M Gilbert MD2 and ​ Michael P Sherman MD1 4. Amniotic Fluid Cell Therapy to Relieve Disc-Related Low Back Pain and Its Efficacy Comparison with ​ Long-Acting Steroid Injection The following pages contain the previously listed references and additional supporting studies. ​ REVIEW www.nature.com/clinicalpractice/rheum Technology Insight: adult mesenchymal stem cells for osteoarthritis therapy Ulrich Nöth, Andre F Steinert and Rocky S Tuan* SUMMARY INTRODUCTION Osteoarthritis (OA), the most common form Despite the high prevalence and morbidity of osteoarthritis (OA), an of joint disease, is characterized by degenera- effective treatment for this disease is currently lacking. Restoration of the tion of the articular cartilage and, ultimately, diseased articular cartilage in patients with OA is, therefore, a challenge of joint destruction.1 Currently, OA is a major considerable appeal to researchers and clinicians. Techniques that cause multipotent adult mesenchymal stem cells (MSCs) to differentiate into cause of disability in the elderly; the prevalence cells of the chondrogenic lineage have led to a variety of experimental of this disease is expected to increase dramati- cally over the next 20 years with an increasingly strategies to investigate whether MSCs instead of chondrocytes can be used 2 for the regeneration and maintenance of articular cartilage. MSC-based aged population. The burden of OA is exacer- strategies should provide practical advantages for the patient with OA. bated by the inadequacies of current therapies. These strategies include use of MSCs as progenitor cells to engineer Nonpharmacologic and pharmacologic treat- cartilage implants that can be used to repair chondral and osteochondral ments are used for early and moderately early lesions, or as trophic producers of bioactive factors to initiate endogenous cases of OA, but protection of articular carti- 3,4 regenerative activities in the OA joint. Targeted gene therapy might further lage has so far not been convincingly shown. enhance these activities of MSCs. Delivery of MSCs might be attained by Surgical intervention is often indicated when the direct intra-articular injection or by graft of engineered constructs derived symptoms cannot be controlled and the disease 5 from cell-seeded scaffolds; this latter approach could provide a three- progresses. Whether arthroscopic lavage and/or dimensional construct with mechanical properties that are congruous debridement can provide symptomatic relief 6 with the weight-bearing function of the joint. Promising experimental and is unclear. Methods for the repair of articular clinical data are beginning to emerge in support of the use of MSCs for cartilage lesions include the transplantation regenerative applications. of osteochondral grafts, microfracturing, and KEYWORDS articular cartilage, biomaterial scaffold, gene delivery, autologous chondrocyte implantation, with osteoarthritis, mesenchymal stem cell or without the assistance of a scaffold matrix to deliver the cells;7–12 however, all of these REVIEW critEria techniques are limited to the repair of focal We searched for full-text, English-language articles in the PubMed database up to lesions.13 Consequently, patients with OA are December 2007 using the term “stem cells” in combination with “osteoarthritis”, “articular cartilage”, “biomaterial scaffold” and “intra-articular injection”, as currently excluded from these treatments. In well as the combination of “stem cells and cartilage and gene therapy”. We also the case of joint malalignment,14 osteotomy searched the reference lists of identified articles for additional published reports. can provide pain relief for several years, until the new weight-bearing articular cartilage U Nöth is an Assistant Professor of Orthopedic Surgery and Head of the erodes, but this tactic merely buys time until a Division of Tissue Engineering at the Orthopedic Center for Musculoskeletal total knee replacement becomes necessary. The Research, König-Ludwig-Haus, Julius-Maximilians-University, Würzburg, challenge for researchers to develop disease- Germany, where AF Steinert is a Senior Resident and Head of the Division modifying OA treatments is, therefore, of of Gene Therapy. RS Tuan is Chief of the Cartilage Biology and Orthopedics paramount importance. Branch at the National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Adult mesenchymal stem cells (MSCs), which Services, Bethesda, MD, USA. have the ability to differentiate into cells of the chondrogenic lineage, have emerged as a candi- Correspondence date cell type with great potential for cell-based *Cartilage Biology and Orthopedics Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Building 50, Room 1523, articular cartilage repair technologies. MSCs can 50 South Drive MSC 8022, Bethesda, MD 20892-8022, USA be isolated from a variety of adult tissues, readily [email protected] culture-expanded without losing their multi- lineage differentiation potential, and have been Received 12 December 2007 Accepted 3 March 2008 Published online 13 May 2008 www.nature.com/clinicalpractice induced to undergo chondrogenic differentiation doi:10.1038/ncprheum0816 in vitro and in vivo.15–17 Unlike chondrocytes, JULY 2008 VOL 4 NO 7 NATURE CLINICAL PRACTICE RHEUMATOLOGY 371 REVIEW REVIEW www.nature.com/clinicalpractice/rheum the use of MSCs is not hindered by the limited POTENTIAL OF MESEnchyMal stEM availability of healthy articular cartilage or CElls TO AID CARTILAGE RESTORATION an intrinsic tendency of the cells to lose their Some of the various OA pathologies might be phenotype during expansion. The use of MSCs obviated by the application of cell-based treat- also obviates the need for a cartilage biopsy and, ments. MSCs are multilineage progenitors that thereby, avoids morbidity caused by damage to can be stimulated to differentiate along specific the donor-site articular surface. pathways, including chondrogenesis.15 In In this Review, we will discuss current MSC- contrast to mature chondrocytes, which must based strategies for the treatment of OA. We be surgically harvested from a limited supply of first address the etiopathophysiology of OA and non-weight-bearing articular cartilage, MSCs the mechanisms responsible for breakdown can be readily harvested from bone marrow of the cartilage extracellular matrix. We then or other tissues of mesenchymal origin, and discuss the potential of MSCs for articular carti- will maintain their multilineage potential even lage repair in patients with OA, with particular with extended passage, which enables their respect to the chondrogenic differentiation considerable expansion in culture.16,17 MSCs are potential of MSCs, and review the currently used commonly isolated by adherence to cell-culture experimental strategies (intra-articular injection, plastic or by density-gradient fractionation and, matrix-guided technologies, and gene therapy). therefore, represent a heterogeneous population An example of the repair of articular cartilage of cells.16,17 Although no definitive marker(s) defects by use of a hydrogel seeded with MSCs for MSCs has been identified, an immuno- is presented, to highlight the current strategies, phenotype that is positive for STRO-1, CD73, limitations and perspectives of using MSCs to CD146, CD105, CD106, and CD166, and nega- treat OA. tive for CD11b, CD45, CD34, CD31 and CD117 has been shown to be the most reliable means of ETIOPATHOPHYSIOLOGY OF OA characterizing the MSC population.16,17 The late stage at which OA is diagnosed, diffi- For the purpose of cartilage regeneration, culties in studying the disease in humans, and extensive analyses of microenvironments that inadequacies in animal models of OA account for promote chondrogenesis in MSCs in vitro have (or contribute to) the poor understanding of this been performed. Conditioning the culture disease. Much research into the pathophysiology medium with growth factors such as fibroblast of OA has focused on the loss of articular growth factor 2 or transforming growth factor β cartilage, caused by
Recommended publications
  • EAZA Best Practice Guidelines Bonobo (Pan Paniscus)
    EAZA Best Practice Guidelines Bonobo (Pan paniscus) Editors: Dr Jeroen Stevens Contact information: Royal Zoological Society of Antwerp – K. Astridplein 26 – B 2018 Antwerp, Belgium Email: [email protected] Name of TAG: Great Ape TAG TAG Chair: Dr. María Teresa Abelló Poveda – Barcelona Zoo [email protected] Edition: First edition - 2020 1 2 EAZA Best Practice Guidelines disclaimer Copyright (February 2020) by EAZA Executive Office, Amsterdam. All rights reserved. No part of this publication may be reproduced in hard copy, machine-readable or other forms without advance written permission from the European Association of Zoos and Aquaria (EAZA). Members of the European Association of Zoos and Aquaria (EAZA) may copy this information for their own use as needed. The information contained in these EAZA Best Practice Guidelines has been obtained from numerous sources believed to be reliable. EAZA and the EAZA APE TAG make a diligent effort to provide a complete and accurate representation of the data in its reports, publications, and services. However, EAZA does not guarantee the accuracy, adequacy, or completeness of any information. EAZA disclaims all liability for errors or omissions that may exist and shall not be liable for any incidental, consequential, or other damages (whether resulting from negligence or otherwise) including, without limitation, exemplary damages or lost profits arising out of or in connection with the use of this publication. Because the technical information provided in the EAZA Best Practice Guidelines can easily be misread or misinterpreted unless properly analysed, EAZA strongly recommends that users of this information consult with the editors in all matters related to data analysis and interpretation.
    [Show full text]
  • BMP-Treated Human Embryonic Stem Cells Transcriptionally Resemble Amnion Cells in the Monkey Embryo
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.21.427650; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. BMP-treated human embryonic stem cells transcriptionally resemble amnion cells in the monkey embryo Sapna Chhabra1,2,3, Aryeh Warmflash2,4* 1Systems Synthetic and Physical Biology graduate program, 2Department of Biosciences, 4Department of Bioengineering, Rice University, Houston, TX 77005 3Present address: Developmental Biology Unit, EMBL Heidelberg. *Correspondence to AW: [email protected] Abstract Human embryonic stem cells (hESCs) possess an immense potential to generate clinically relevant cell types and unveil mechanisms underlying early human development. However, using hESCs for discovery or translation requires accurately identifying differentiated cell types through comparison with their in vivo counterparts. Here, we set out to determine the identity of much debated BMP-treated hESCs by comparing their transcriptome to the recently published single cell transcriptomes of early human embryos in the study Xiang et al 2019. Our analyses reveal several discrepancies in the published human embryo dataset, including misclassification of putative amnion, intermediate and inner cell mass cells. These misclassifications primarily resulted from similarities in pseudogene expression, highlighting the need to carefully consider gene lists when making comparisons between cell types. In the absence of a relevant human dataset, we utilized the recently published single cell transcriptome of the early post implantation monkey embryo to discern the identity of BMP-treated hESCs.
    [Show full text]
  • In Search of Placentophagy
    This article was downloaded by: [184.7.75.65] On: 14 July 2012, At: 14:25 Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Ecology of Food and Nutrition Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gefn20 In Search of Human Placentophagy: A Cross-Cultural Survey of Human Placenta Consumption, Disposal Practices, and Cultural Beliefs Sharon M. Young a & Daniel C. Benyshek a a Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, Nevada, USA Version of record first published: 06 Nov 2010 To cite this article: Sharon M. Young & Daniel C. Benyshek (2010): In Search of Human Placentophagy: A Cross-Cultural Survey of Human Placenta Consumption, Disposal Practices, and Cultural Beliefs, Ecology of Food and Nutrition, 49:6, 467-484 To link to this article: http://dx.doi.org/10.1080/03670244.2010.524106 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • Amnion-Derived Cells As a Reliable Resource for Next-Generation Regenerative Medicine T
    Placenta 84 (2019) 50–56 Contents lists available at ScienceDirect Placenta journal homepage: www.elsevier.com/locate/placenta Amnion-derived cells as a reliable resource for next-generation regenerative medicine T Akihiro Umezawaa,*, Akihiro Hasegawaa,b, Momoko Inouea,b, Akiko Tanuma-Takahashia,b, Kazuhiro Kajiwaraa,b, Hatsune Makinoa, Emi Chikazawaa, Aikou Okamotob a Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan b Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan ARTICLE INFO ABSTRACT Keywords: The placenta is composed of the amnion, chorionic plate, villous and smooth chorion, decidua basalis, and HLA umbilical cord. The amnion is a readily obtainable source of a large number of cells and cell types, including Mesenchymal stem cell epithelium, mesenchyme, and endothelium, and is thus an allogeneic resource for regenerative medicine. Cell-based therapy Endothelial cells are obtained from large arteries and veins in the amniotic membrane as well as the umbilical Stromal cell cord. The amnion-derived cells exhibit transdifferentiation capabilities, including chondrogenesis and cardio- Epithelial cell myogenesis, by introduction of transcription factors, in addition to their original and potential phenotypes. The Direct reprogramming amnion is also a source for production of induced pluripotent stem cells (AM-iPSCs). The AM-iPSCs exhibit stable phenotypes, such as multipotency and immortality, and a unique gene expression pattern. Through the use of amnion-derived cells, as well as other placenta-derived cells, preclinical proof of concept has been achieved in a mouse model of muscular dystrophy. 1. Text manually separated (Fig. 1A–G).
    [Show full text]
  • Ovsepian SV, O'leary VB, Hoschl C. Mainstream Psychiatry Reinstates
    Drug Discovery Today Volume 26, Number 3 March 2021 REVIEWS Mainstream psychiatry reinstates POST SCREEN therapeutic ventures of the remote past Reviews 1,2,3 4 1,2 Saak V. Ovsepian , Valerie B. O’Leary and Cyril Hoschl 1 Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic 2 Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic 3 International Centre for Neurotherapeutics, Dublin City University, Dublin 9, Ireland 4 Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Praha 10, Czech Republic The reinstatement and revision of abandoned therapeutic ventures of the past has been an integral part of medical research and advancement. In psychiatry, much interest was generated recently by emerging data on the use of faecal supplements for restoring the neurochemical balance in the brain, and on the ingestion of placenta to stabilize neural circuits disrupted by childbirth-related hormonal changes. Herein, we consider the emerging scientific evidence and socio-cultural prerequisites favouring the re- entry of these heterodox customs, which are reminiscent of widespread instinctive behaviours in wildlife, into modern healthcare. We explore their evolutionary background and adaptive significance, and consider mechanisms of therapeutic benefits. Finally, we reflect on emerging opportunities and challenges, which present clues towards better prevention and treatment of major neuropsychiatric disorders. Introduction widely documented. Still, the placenta and amniotic fluid have Influential works in ancient and early-modern pharmacy have been considered of major relevance to the management of pain included extensive debates and discussion of the use of human and distress related to childbirth.
    [Show full text]
  • Prenatal Transplantation of Human Amniotic Fluid Stem Cell Could
    www.nature.com/scientificreports OPEN Prenatal transplantation of human amniotic fuid stem cell could improve clinical outcome of type III spinal muscular atrophy in mice Steven W. Shaw1,2,3,10*, Shao‑Yu Peng4,10, Ching‑Chung Liang5, Tzu‑Yi Lin1, Po‑Jen Cheng1,5, T’sang‑T’ang Hsieh1,2, Hao‑Yu Chuang6,7, Paolo De Coppi8,9 & Anna L. David3 Spinal muscular atrophy (SMA) is a single gene disorder afecting motor function in uterus. Amniotic fuid is an alternative source of stem cell to ameliorate SMA. Therefore, this study aims to examine the therapeutic potential of Human amniotic fuid stem cell (hAFSC) for SMA. Our SMA model mice were generated by deletion of exon 7 of Smn gene and knock‑in of human SMN2. A total of 16 SMA model mice were injected with 1 × ­105 hAFSC in uterus, and the other 16 mice served as the negative control. Motor function was analyzed by three behavioral tests. Engraftment of hAFSC in organs were assessed by fow cytometry and RNA scope. Frequency of myocytes, neurons and innervated receptors were estimated by staining. With hAFSC transplantation, 15 fetuses survived (93.75% survival) and showed better performance in all motor function tests. Higher engraftment frequency were observed in muscle and liver. Besides, the muscle with hAFSC transplantation expressed much laminin α and PAX‑7. Signifcantly higher frequency of myocytes, neurons and innervated receptors were observed. In our study, hAFSC engrafted on neuromuscular organs and improved cellular and behavioral outcomes of SMA model mice. This fetal therapy could preserve the time window and treat in the uterus.
    [Show full text]
  • Mechanisms of Human Embryo Development: from Cell Fate to Tissue Shape and Back Marta N
    © 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev190629. doi:10.1242/dev.190629 REVIEW Mechanisms of human embryo development: from cell fate to tissue shape and back Marta N. Shahbazi* ABSTRACT activated ion channels (Coste et al., 2010), mechanosensitive Gene regulatory networks and tissue morphogenetic events drive the transcription factors (Dupont et al., 2011) or directly by the nucleus emergence of shape and function: the pillars of embryo development. (Kirby and Lammerding, 2018). Once sensed, mechanical cues – Although model systems offer a window into the molecular biology of are transduced into biochemical signals a process known as cell fate and tissue shape, mechanistic studies of our own mechanotransduction (Chan et al., 2017). The conversion of development have so far been technically and ethically challenging. mechanical cues into biochemical signals leads to changes in However, recent technical developments provide the tools to gene expression and protein activity that control cell behaviour, cell describe, manipulate and mimic human embryos in a dish, thus fate specification and tissue patterning. opening a new avenue to exploring human development. Here, I Current consensus focuses on two main ideas to explain the discuss the evidence that supports a role for the crosstalk between emergence of tissue patterns in response to morphogen (see Glossary, ‘ ’ cell fate and tissue shape during early human embryogenesis. This is Box1)signals.Inthe positional information model (Wolpert, a critical developmental period, when the body plan is laid out and 1969), the concentration of a morphogen serves as a coordinate of the many pregnancies fail. Dissecting the basic mechanisms that position of a cell within a tissue.
    [Show full text]
  • Stem/Progenitor Cells in Fetuses and Newborns: Overview of Immunohistochemical Markers D
    Fanni et al. Cell Regeneration (2021) 10:22 https://doi.org/10.1186/s13619-021-00084-6 REVIEW Open Access Stem/progenitor cells in fetuses and newborns: overview of immunohistochemical markers D. Fanni1,2, C. Gerosa1,2, C. Loddo3, M. Castagnola4, V. Fanos3, M. Zaffanello5* and G. Faa1,2 Abstract Microanatomy of the vast majority of human organs at birth is characterized by marked differences as compared to adult organs, regarding their architecture and the cell types detectable at histology. In preterm neonates, these differences are even more evident, due to the lower level of organ maturation and to ongoing cell differentiation. One of the most remarkable finding in preterm tissues is the presence of huge amounts of stem/progenitor cells in multiple organs, including kidney, brain, heart, adrenals, and lungs. In other organs, such as liver, the completely different burden of cell types in preterm infants is mainly related to the different function of the liver during gestation, mainly focused on hematopoiesis, a function that is taken by bone marrow after birth. Our preliminary studies showed that the antigens expressed by stem/progenitors differ significantly from one organ to the next. Moreover, within each developing human tissue, reactivity for different stem cell markers also changes during gestation, according with the multiple differentiation steps encountered by each progenitor during development. A better knowledge of stem/progenitor cells of preterms will allow neonatologists to boost preterm organ maturation, favoring the differentiation of the multiple cells types that characterize each organ in at term neonates. Keywords: Fetus, Immunohistochemical analysis, Newborn, Progenitor cells, Stem cells Background markers have been proposed during the years.
    [Show full text]
  • BMP) Journal Homepage
    DOI 10.7603/s40855-015-0002-1 PROGRESS IN STEM CELL 2015, 2(1):58-64 Available online at http://www.springer.com/globalsciencejournals BioMedPress (BMP) Journal homepage: http://www.cellstemcell.org http://www.biomedpress.org/psc Research article Demons resurrected from Angels! What are or are not the molecular clues of the rising of the teratoma or teratocarcinoma from human amniotic stem cell? Md. Shaifur Rahman1*, Madhuri Haque2, S. M. Asaduzzaman1 1Tissue Banking and Biomaterial Research Unit (TBBRU), Atomic Energy Research Establishment (AERE), 1349 Dhaka, Bangladesh 2Department of Biotechnology and Genetic Engineering, Jahangirnagar University, 1342 Dhaka, Bangladesh A R T I C L E I N F O Article history: Received 09 Nov 2015 Accepted 04 Dec 2015 Published 25 December 2015 A B S T R A C T Stem cell has great therapeutic potentials as it proliferates indefinitely, as well as gives rise to other cell type in our body. However, human pluripotent stem cell (hPSC) technology faces some obstacles associated with tumorigenicity and telomere shortening. And the risk of tumorigenicity of hPSC upon transplantation is one of the major hurdles, which must be overcome before hPSC based clinical practices. Interestingly, human amniotic stem cell (hASC) showed promising results by bypassing from the drawback. But, the important question is how hASC fully or partially escape from the progression of teratoma in severe combined immunodeficiency (SCID) mice, which remains unravel. It is decisive to comprehend the molecular mechanisms responsible for that of teratogenic and this non-teratogenic effect. Evidently, teratoma represents a critical line between stem cells, differentiation and tumorigenesis.
    [Show full text]
  • Amniotic Fluid Stem Cells: a Promising Therapeutic Resource for Cell-Based Regenerative Therapy
    1846 Current Pharmaceutical Design, 2012, 18, 1846-1863 Amniotic Fluid Stem Cells: a Promising Therapeutic Resource for Cell-Based Regenerative Therapy Ivana Antonucci1,2, Andrea Pantalone2,3, Stefano Tetè1,2, Vincenzo Salini2,3, Cesar V. Borlongan4, David Hess5 and Liborio Stuppia1,2* 1Department of Oral Sciences, Nano and Biotechnologies, G. d’Annuzio University, Chieti-Pescara, Italy; 2Stem Tech Group, Aging Research Center (CESI), Chieti, Italy; 3Department of Orthopaedics and Traumatology, G. d'Annunzio University, Chieti-Pescara, Italy; 4Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA; 5De- partment of Neurology, Georgia Health Sciences University, Augusta, G, USA Abstract: Stem cells have been proposed as a powerful tool in the treatment of several human diseases, both for their ability to represent a source of new cells to replace those lost due to tissue injuries or degenerative diseases, and for the ability of produce trophic molecules able to minimize damage and promote recovery in the injured tissue. Different cell types, such as embryonic, fetal or adult stem cells, human fetal tissues and genetically engineered cell lines, have been tested for their ability to replace damaged cells and to restore the tis- sue function after transplantation. Amniotic fluid -derived Stem cells (AFS) are considered a novel resource for cell transplantation ther- apy, due to their high renewal capacity, the “in vitro” expression of embryonic cell lineage markers, and the ability to differentiate in tis- sues derived from all the three embryonic layers. Moreover, AFS do not produce teratomas when transplanted into animals and are char- acterized by a low antigenicity, which could represent an advantage for cell transplantation or cell replacement therapy.
    [Show full text]
  • A Paediatric Perspective on Stem Cells: Expression, Function and Clinical Relevance Arnaldo Cantani* Department of Pediatrics, University of Roma “La Sapienza”, Italy
    e Engine ym er z in n g E Cantani, Enz Eng 2016, 5:3 DOI: 10.4172/2329-6674.1000154 Enzyme Engineering ISSN: 2329-6674 ReviewResearch Article Article Open Access A Paediatric Perspective on Stem Cells: Expression, Function and Clinical Relevance Arnaldo Cantani* Department of Pediatrics, University of Roma “La Sapienza”, Italy Abstract In this paper, we provide an overview of the potential advantages and disadvantages of different stem and progenitor cell populations identified to date in amniotic fluid, along with their properties and potential clinical applications. In the last ten years, placenta, fetal membranes (i.e. amnion and chorion), and amniotic fluid have been extensively investigated as a potential non-controversial source of stem cells. They are usually discarded after delivery and are accessible during pregnancy through amniocentesis and chorionic villus sampling. Several populations of cells with multi-lineage differentiation potential and immune-modulatory properties have been isolated from the human placenta and fetal membranes; they have been classified by an international workshop as human amniotic epithelial cells (hAECs) human amniotic mesenchymal stromal cells (hAMSCs) human chorionic mesenchymal stromal cells (hCMSCs) by Igura et al. and Anker et al., and human chorionic trophoblastic cells (hCTCs). Although only recently described, these cells may, given the easier accessibility of the AF in comparison to other extra-embryonic tissues, hold much promise in regenerative medicine. Keywords: Stem cells; Multi-lineage; Amniotic fluid; Gastro-intestine 7th week to 600 ml in the 25th week, 1000 ml in the 34th week and 800 ml at birth. Introduction During the first half of gestation, the AF results from active sodium In the last ten years, placenta, fetal membranes (i.e.
    [Show full text]
  • Amniotic Derived Stem Cells: Role and Function in Regenerative
    ll Scienc Ce e f & o T l h a e n r a r a p p u u y y o o J J Journal of Cell Science & Therapy Larson and Gallicchio, J Cell Sci Ther 2017, 8:3 ISSN: 2157-7013 DOI: 10.4172/2157-7013. 1000269 Research Article Open Access Amniotic Derived Stem Cells: Role and Function in Regenerative Medicine Andrew Larson and Vincent S Gallicchio* Department of Biological Sciences, College of Science, Clemson University, Clemson, USA *Corresponding author: Vincent S Gallicchio, Department of Biological Sciences, College of Science, Clemson University, Clemson, USA, Tel: +1 8646563311; E-mail: [email protected] Rec Date: Apr 11, 2017, Acc Date: May 02, 2017, Pub Date: May 04, 2017 Copyright: © 2017 Larson A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Abstract Stem cells are undifferentiated biological cells that have the ability to differentiate into any specialized cells capable of cell division through mitosis. Amniotic stem cells (ASCs) are collectively a mixture of stem cells that can be obtained from amniotic fluid and tissue. Amniotic fluid is commonly called a pregnant woman’s water. It is the protective liquid contained within the amniotic sac that lubricates the embryo or fetus that is generated by the maternal blood plasma, which is the liquid component that contains all of the blood derived cells in suspension. The amniotic fluid is absorbed through the fetal tissue and skin until the 20-25th week of pregnancy when the fetal skin begins to keratinize.
    [Show full text]