The Jacobian of the Exponential Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linear Systems and Control: a First Course (Course Notes for AAE 564)
Linear Systems and Control: A First Course (Course notes for AAE 564) Martin Corless School of Aeronautics & Astronautics Purdue University West Lafayette, Indiana [email protected] August 25, 2008 Contents 1 Introduction 1 1.1 Ingredients..................................... 4 1.2 Somenotation................................... 4 1.3 MATLAB ..................................... 4 2 State space representation of dynamical systems 5 2.1 Linearexamples.................................. 5 2.1.1 Afirstexample .............................. 5 2.1.2 Theunattachedmass........................... 6 2.1.3 Spring-mass-damper ........................... 6 2.1.4 Asimplestructure ............................ 7 2.2 Nonlinearexamples............................... 8 2.2.1 Afirstnonlinearsystem ......................... 8 2.2.2 Planarpendulum ............................. 9 2.2.3 Attitudedynamicsofarigidbody. .. 9 2.2.4 Bodyincentralforcemotion. 10 2.2.5 Ballisticsindrag ............................. 11 2.2.6 Doublependulumoncart . .. .. 12 2.2.7 Two-linkroboticmanipulator . .. 13 2.3 Discrete-timeexamples . ... 14 2.3.1 Thediscreteunattachedmass . 14 2.4 Generalrepresentation . ... 15 2.4.1 Continuous-time ............................. 15 2.4.2 Discrete-time ............................... 18 2.4.3 Exercises.................................. 20 2.5 Vectors....................................... 22 2.5.1 Vector spaces and IRn .......................... 22 2.5.2 IR2 andpictures.............................. 24 2.5.3 Derivatives ............................... -
Quantum Information
Quantum Information J. A. Jones Michaelmas Term 2010 Contents 1 Dirac Notation 3 1.1 Hilbert Space . 3 1.2 Dirac notation . 4 1.3 Operators . 5 1.4 Vectors and matrices . 6 1.5 Eigenvalues and eigenvectors . 8 1.6 Hermitian operators . 9 1.7 Commutators . 10 1.8 Unitary operators . 11 1.9 Operator exponentials . 11 1.10 Physical systems . 12 1.11 Time-dependent Hamiltonians . 13 1.12 Global phases . 13 2 Quantum bits and quantum gates 15 2.1 The Bloch sphere . 16 2.2 Density matrices . 16 2.3 Propagators and Pauli matrices . 18 2.4 Quantum logic gates . 18 2.5 Gate notation . 21 2.6 Quantum networks . 21 2.7 Initialization and measurement . 23 2.8 Experimental methods . 24 3 An atom in a laser field 25 3.1 Time-dependent systems . 25 3.2 Sudden jumps . 26 3.3 Oscillating fields . 27 3.4 Time-dependent perturbation theory . 29 3.5 Rabi flopping and Fermi's Golden Rule . 30 3.6 Raman transitions . 32 3.7 Rabi flopping as a quantum gate . 32 3.8 Ramsey fringes . 33 3.9 Measurement and initialisation . 34 1 CONTENTS 2 4 Spins in magnetic fields 35 4.1 The nuclear spin Hamiltonian . 35 4.2 The rotating frame . 36 4.3 On-resonance excitation . 38 4.4 Excitation phases . 38 4.5 Off-resonance excitation . 39 4.6 Practicalities . 40 4.7 The vector model . 40 4.8 Spin echoes . 41 4.9 Measurement and initialisation . 42 5 Photon techniques 43 5.1 Spatial encoding . -
Block Kronecker Products and the Vecb Operator* CORE View
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Block Kronecker Products and the vecb Operator* Ruud H. Koning Department of Economics University of Groningen P.O. Box 800 9700 AV, Groningen, The Netherlands Heinz Neudecker+ Department of Actuarial Sciences and Econometrics University of Amsterdam Jodenbreestraat 23 1011 NH, Amsterdam, The Netherlands and Tom Wansbeek Department of Economics University of Groningen P.O. Box 800 9700 AV, Groningen, The Netherlands Submitted hv Richard Rrualdi ABSTRACT This paper is concerned with two generalizations of the Kronecker product and two related generalizations of the vet operator. It is demonstrated that they pairwise match two different kinds of matrix partition, viz. the balanced and unbalanced ones. Relevant properties are supplied and proved. A related concept, the so-called tilde transform of a balanced block matrix, is also studied. The results are illustrated with various statistical applications of the five concepts studied. *Comments of an anonymous referee are gratefully acknowledged. ‘This work was started while the second author was at the Indian Statistiral Institute, New Delhi. LINEAR ALGEBRA AND ITS APPLICATIONS 149:165-184 (1991) 165 0 Elsevier Science Publishing Co., Inc., 1991 655 Avenue of the Americas, New York, NY 10010 0024-3795/91/$3.50 166 R. H. KONING, H. NEUDECKER, AND T. WANSBEEK INTRODUCTION Almost twenty years ago Singh [7] and Tracy and Singh [9] introduced a generalization of the Kronecker product A@B. They used varying notation for this new product, viz. A @ B and A &3B. Recently, Hyland and Collins [l] studied the-same product under rather restrictive order conditions. -
MATH 237 Differential Equations and Computer Methods
Queen’s University Mathematics and Engineering and Mathematics and Statistics MATH 237 Differential Equations and Computer Methods Supplemental Course Notes Serdar Y¨uksel November 19, 2010 This document is a collection of supplemental lecture notes used for Math 237: Differential Equations and Computer Methods. Serdar Y¨uksel Contents 1 Introduction to Differential Equations 7 1.1 Introduction: ................................... ....... 7 1.2 Classification of Differential Equations . ............... 7 1.2.1 OrdinaryDifferentialEquations. .......... 8 1.2.2 PartialDifferentialEquations . .......... 8 1.2.3 Homogeneous Differential Equations . .......... 8 1.2.4 N-thorderDifferentialEquations . ......... 8 1.2.5 LinearDifferentialEquations . ......... 8 1.3 Solutions of Differential equations . .............. 9 1.4 DirectionFields................................. ........ 10 1.5 Fundamental Questions on First-Order Differential Equations............... 10 2 First-Order Ordinary Differential Equations 11 2.1 ExactDifferentialEquations. ........... 11 2.2 MethodofIntegratingFactors. ........... 12 2.3 SeparableDifferentialEquations . ............ 13 2.4 Differential Equations with Homogenous Coefficients . ................ 13 2.5 First-Order Linear Differential Equations . .............. 14 2.6 Applications.................................... ....... 14 3 Higher-Order Ordinary Linear Differential Equations 15 3.1 Higher-OrderDifferentialEquations . ............ 15 3.1.1 LinearIndependence . ...... 16 3.1.2 WronskianofasetofSolutions . ........ 16 3.1.3 Non-HomogeneousProblem -
The Exponential of a Matrix
5-28-2012 The Exponential of a Matrix The solution to the exponential growth equation dx kt = kx is given by x = c e . dt 0 It is natural to ask whether you can solve a constant coefficient linear system ′ ~x = A~x in a similar way. If a solution to the system is to have the same form as the growth equation solution, it should look like At ~x = e ~x0. The first thing I need to do is to make sense of the matrix exponential eAt. The Taylor series for ez is ∞ n z z e = . n! n=0 X It converges absolutely for all z. It A is an n × n matrix with real entries, define ∞ n n At t A e = . n! n=0 X The powers An make sense, since A is a square matrix. It is possible to show that this series converges for all t and every matrix A. Differentiating the series term-by-term, ∞ ∞ ∞ ∞ n−1 n n−1 n n−1 n−1 m m d At t A t A t A t A At e = n = = A = A = Ae . dt n! (n − 1)! (n − 1)! m! n=0 n=1 n=1 m=0 X X X X At ′ This shows that e solves the differential equation ~x = A~x. The initial condition vector ~x(0) = ~x0 yields the particular solution At ~x = e ~x0. This works, because e0·A = I (by setting t = 0 in the power series). Another familiar property of ordinary exponentials holds for the matrix exponential: If A and B com- mute (that is, AB = BA), then A B A B e e = e + . -
Scientific Computing: an Introductory Survey
Eigenvalue Problems Existence, Uniqueness, and Conditioning Computing Eigenvalues and Eigenvectors Scientific Computing: An Introductory Survey Chapter 4 – Eigenvalue Problems Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted for noncommercial, educational use only. Michael T. Heath Scientific Computing 1 / 87 Eigenvalue Problems Existence, Uniqueness, and Conditioning Computing Eigenvalues and Eigenvectors Outline 1 Eigenvalue Problems 2 Existence, Uniqueness, and Conditioning 3 Computing Eigenvalues and Eigenvectors Michael T. Heath Scientific Computing 2 / 87 Eigenvalue Problems Eigenvalue Problems Existence, Uniqueness, and Conditioning Eigenvalues and Eigenvectors Computing Eigenvalues and Eigenvectors Geometric Interpretation Eigenvalue Problems Eigenvalue problems occur in many areas of science and engineering, such as structural analysis Eigenvalues are also important in analyzing numerical methods Theory and algorithms apply to complex matrices as well as real matrices With complex matrices, we use conjugate transpose, AH , instead of usual transpose, AT Michael T. Heath Scientific Computing 3 / 87 Eigenvalue Problems Eigenvalue Problems Existence, Uniqueness, and Conditioning Eigenvalues and Eigenvectors Computing Eigenvalues and Eigenvectors Geometric Interpretation Eigenvalues and Eigenvectors Standard eigenvalue problem : Given n × n matrix A, find scalar λ and nonzero vector x such that A x = λ x λ is eigenvalue, and x is corresponding eigenvector -
Genius Manual I
Genius Manual i Genius Manual Genius Manual ii Copyright © 1997-2016 Jiríˇ (George) Lebl Copyright © 2004 Kai Willadsen Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License (GFDL), Version 1.1 or any later version published by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. You can find a copy of the GFDL at this link or in the file COPYING-DOCS distributed with this manual. This manual is part of a collection of GNOME manuals distributed under the GFDL. If you want to distribute this manual separately from the collection, you can do so by adding a copy of the license to the manual, as described in section 6 of the license. Many of the names used by companies to distinguish their products and services are claimed as trademarks. Where those names appear in any GNOME documentation, and the members of the GNOME Documentation Project are made aware of those trademarks, then the names are in capital letters or initial capital letters. DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT ARE PROVIDED UNDER THE TERMS OF THE GNU FREE DOCUMENTATION LICENSE WITH THE FURTHER UNDERSTANDING THAT: 1. DOCUMENT IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS FREE OF DEFECTS MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY, ACCURACY, AND PERFORMANCE OF THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS WITH YOU. -
The Exponential Function for Matrices
The exponential function for matrices Matrix exponentials provide a concise way of describing the solutions to systems of homoge- neous linear differential equations that parallels the use of ordinary exponentials to solve simple differential equations of the form y0 = λ y. For square matrices the exponential function can be defined by the same sort of infinite series used in calculus courses, but some work is needed in order to justify the construction of such an infinite sum. Therefore we begin with some material needed to prove that certain infinite sums of matrices can be defined in a mathematically sound manner and have reasonable properties. Limits and infinite series of matrices Limits of vector valued sequences in Rn can be defined and manipulated much like limits of scalar valued sequences, the key adjustment being that distances between real numbers that are expressed in the form js−tj are replaced by distances between vectors expressed in the form jx−yj. 1 Similarly, one can talk about convergence of a vector valued infinite series n=0 vn in terms of n the convergence of the sequence of partial sums sn = i=0 vk. As in the case of ordinary infinite series, the best form of convergence is absolute convergence, which correspondsP to the convergence 1 P of the real valued infinite series jvnj with nonnegative terms. A fundamental theorem states n=0 1 that a vector valued infinite series converges if the auxiliary series jvnj does, and there is P n=0 a generalization of the standard M-test: If jvnj ≤ Mn for all n where Mn converges, then P n vn also converges. -
Approximating the Exponential from a Lie Algebra to a Lie Group
MATHEMATICS OF COMPUTATION Volume 69, Number 232, Pages 1457{1480 S 0025-5718(00)01223-0 Article electronically published on March 15, 2000 APPROXIMATING THE EXPONENTIAL FROM A LIE ALGEBRA TO A LIE GROUP ELENA CELLEDONI AND ARIEH ISERLES 0 Abstract. Consider a differential equation y = A(t; y)y; y(0) = y0 with + y0 2 GandA : R × G ! g,whereg is a Lie algebra of the matricial Lie group G. Every B 2 g canbemappedtoGbythematrixexponentialmap exp (tB)witht 2 R. Most numerical methods for solving ordinary differential equations (ODEs) on Lie groups are based on the idea of representing the approximation yn of + the exact solution y(tn), tn 2 R , by means of exact exponentials of suitable elements of the Lie algebra, applied to the initial value y0. This ensures that yn 2 G. When the exponential is difficult to compute exactly, as is the case when the dimension is large, an approximation of exp (tB) plays an important role in the numerical solution of ODEs on Lie groups. In some cases rational or poly- nomial approximants are unsuitable and we consider alternative techniques, whereby exp (tB) is approximated by a product of simpler exponentials. In this paper we present some ideas based on the use of the Strang splitting for the approximation of matrix exponentials. Several cases of g and G are considered, in tandem with general theory. Order conditions are discussed, and a number of numerical experiments conclude the paper. 1. Introduction Consider the differential equation (1.1) y0 = A(t; y)y; y(0) 2 G; with A : R+ × G ! g; where G is a matricial Lie group and g is the underlying Lie algebra. -
Diagonalizable Matrix - Wikipedia, the Free Encyclopedia
Diagonalizable matrix - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Matrix_diagonalization Diagonalizable matrix From Wikipedia, the free encyclopedia (Redirected from Matrix diagonalization) In linear algebra, a square matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P such that P −1AP is a diagonal matrix. If V is a finite-dimensional vector space, then a linear map T : V → V is called diagonalizable if there exists a basis of V with respect to which T is represented by a diagonal matrix. Diagonalization is the process of finding a corresponding diagonal matrix for a diagonalizable matrix or linear map.[1] A square matrix which is not diagonalizable is called defective. Diagonalizable matrices and maps are of interest because diagonal matrices are especially easy to handle: their eigenvalues and eigenvectors are known and one can raise a diagonal matrix to a power by simply raising the diagonal entries to that same power. Geometrically, a diagonalizable matrix is an inhomogeneous dilation (or anisotropic scaling) — it scales the space, as does a homogeneous dilation, but by a different factor in each direction, determined by the scale factors on each axis (diagonal entries). Contents 1 Characterisation 2 Diagonalization 3 Simultaneous diagonalization 4 Examples 4.1 Diagonalizable matrices 4.2 Matrices that are not diagonalizable 4.3 How to diagonalize a matrix 4.3.1 Alternative Method 5 An application 5.1 Particular application 6 Quantum mechanical application 7 See also 8 Notes 9 References 10 External links Characterisation The fundamental fact about diagonalizable maps and matrices is expressed by the following: An n-by-n matrix A over the field F is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to n, which is the case if and only if there exists a basis of Fn consisting of eigenvectors of A. -
Package 'Fastmatrix'
Package ‘fastmatrix’ May 8, 2021 Type Package Title Fast Computation of some Matrices Useful in Statistics Version 0.3-819 Date 2021-05-07 Author Felipe Osorio [aut, cre] (<https://orcid.org/0000-0002-4675-5201>), Alonso Ogueda [aut] Maintainer Felipe Osorio <[email protected]> Description Small set of functions to fast computation of some matrices and operations useful in statistics and econometrics. Currently, there are functions for efficient computation of duplication, commutation and symmetrizer matrices with minimal storage requirements. Some commonly used matrix decompositions (LU and LDL), basic matrix operations (for instance, Hadamard, Kronecker products and the Sherman-Morrison formula) and iterative solvers for linear systems are also available. In addition, the package includes a number of common statistical procedures such as the sweep operator, weighted mean and covariance matrix using an online algorithm, linear regression (using Cholesky, QR, SVD, sweep operator and conjugate gradients methods), ridge regression (with optimal selection of the ridge parameter considering the GCV procedure), functions to compute the multivariate skewness, kurtosis, Mahalanobis distance (checking the positive defineteness) and the Wilson-Hilferty transformation of chi squared variables. Furthermore, the package provides interfaces to C code callable by another C code from other R packages. Depends R(>= 3.5.0) License GPL-3 URL https://faosorios.github.io/fastmatrix/ NeedsCompilation yes LazyLoad yes Repository CRAN Date/Publication 2021-05-08 08:10:06 UTC R topics documented: array.mult . .3 1 2 R topics documented: asSymmetric . .4 bracket.prod . .5 cg ..............................................6 comm.info . .7 comm.prod . .8 commutation . .9 cov.MSSD . 10 cov.weighted . -
Singles out a Specific Basis
Quantum Information and Quantum Noise Gabriel T. Landi University of Sao˜ Paulo July 3, 2018 Contents 1 Review of quantum mechanics1 1.1 Hilbert spaces and states........................2 1.2 Qubits and Bloch’s sphere.......................3 1.3 Outer product and completeness....................5 1.4 Operators................................7 1.5 Eigenvalues and eigenvectors......................8 1.6 Unitary matrices.............................9 1.7 Projective measurements and expectation values............ 10 1.8 Pauli matrices.............................. 11 1.9 General two-level systems....................... 13 1.10 Functions of operators......................... 14 1.11 The Trace................................ 17 1.12 Schrodinger’s¨ equation......................... 18 1.13 The Schrodinger¨ Lagrangian...................... 20 2 Density matrices and composite systems 24 2.1 The density matrix........................... 24 2.2 Bloch’s sphere and coherence...................... 29 2.3 Composite systems and the almighty kron............... 32 2.4 Entanglement.............................. 35 2.5 Mixed states and entanglement..................... 37 2.6 The partial trace............................. 39 2.7 Reduced density matrices........................ 42 2.8 Singular value and Schmidt decompositions.............. 44 2.9 Entropy and mutual information.................... 50 2.10 Generalized measurements and POVMs................ 62 3 Continuous variables 68 3.1 Creation and annihilation operators................... 68 3.2 Some important