Best Practices in Software Development: Principles of Good

Total Page:16

File Type:pdf, Size:1020Kb

Best Practices in Software Development: Principles of Good Best Practices in Software Development: Principles of Good Design Ansgar Fehnker Based on slides by: Arend Rensink, Christoph Bockisch, Mira Mezini, Lodewijk Bergmans What is Good Software? . External criteria . Correctness, robustness, extensibility, efficiency, ease of use ... Stakeholders: . end user, e.g., a travel agent using a flight reservation system . persons who purchase the software, e.g., an airline executive acquiring or commissioning flight reservation systems . Internal criteria . Modularity, readability, reusability, ... Stakeholders: . IT professionals with access to the source . Only external factors matter in the end . but the key to achieving them is in the internal ones Patterns of Software Development 2 External vs. Internal Criteria Patterns of Software Development 3 External Criteria: Correctness . What is correctness? . the ability of a software product to perform its task . as defined by its specification . Examples of (in-)correct systems? Application . Due to complexity, methods for ensuring correctness will usually be conditional or layered . each layer relying on lower ones Hardware Patterns of Software Development 4 External Criteria: Robustness . What is robustness? . the ability of software to react appropriately to abnormal conditions . Examples of (non-)robust systems? . Difference robustness/correctness? . Correctness addresses the behavior of a system in cases covered by its specification . Robustness characterizes what happens outside of that specification Patterns of Software Development 5 External Criteria: Efficiency . What is efficiency? . place as few demands as possible on hardware resources: . processor time, memory, bandwidth, power . Examples of (in-)efficient systems? . A software case of split personality . Mr. Microsecond: shows an exaggerated concern for micro- optimisation. “Premature optimization is the root of all evil” . Dr. Abstract: “make it right before you make it fast” ... “next year’s computer model is going to be 50% faster anyway” . Some more aphorisms: . Donald Knuth: We should forget about small efficiencies, say about 97% of the time. Yet we should not pass up our opportunities in that critical 3% . Betrand Meyer: do not worry how fast it is unless it is also right Patterns of Software Development 6 External Criteria: Extensibility . What is extensibility? . the ease of adapting software to changes of specification . Examples of (non-)extensible systems? . A problem of scale . as software grows bigger, it becomes harder to adapt . a large software system resembles a giant house of cards in which pulling out any one element might cause the whole edifice to collapse . “legacy software”: software you are afraid to touch . Change is ubiquitous in software development . even in scientific computation, where we may expect the laws of physics to stay in place, our way of understanding and modelling physical systems will change . lesson: design for change! Patterns of Software Development 8 External Criteria: Extensibility . Two principles . design simplicity . decentralised architecture You know you have achieved perfection in design, not when you have nothing more to add, but when you have nothing more to take away. Antoine de Saint-Exupéry Patterns of Software Development 9 Bad Extensibility = + Patterns of Software Development 10 Good Extensibility = + Patterns of Software Development 11 Internal criteria: Reusability . What is reusability? . the ability of software elements to serve for the construction of many different applications . Examples of (non-)reusable components? . Software systems often follow similar patterns . it is possible to exploit this commonality and avoid reinventing solutions . by capturing such a pattern, a software component becomes more reusable . Erich Gamma, Ralph Johnson, Richard Helm, John Vlissides. "Design Patterns: Elements of Reusable Object-Oriented Software" (2nd edition), Addison Wesley, 1998 Patterns of Software Development 12 Extensibility & Reusability . Similar ideas are useful for improving both qualities; e.g.: . decentralized architectures . components are self-contained components . communication only through restricted and clearly defined interfaces . The term modularity will cover extensibility and reusability Software spends 60%-80% of its lifetime in maintenance! Patterns of Software Development 13 How is Modularity Achieved? . by decomposing a system into modules . what is a module? . what principles are applied during decomposition? . some characteristics of modularized systems . separate, distinct modules for each task . well-defined inputs and outputs . tested independently . maintenance in modular fashion Patterns of Software Development 14 Modularity (Betrand Meyer) . Bertrand Meyer. "Object-Oriented Software Construction" (second edition), Prentice Hall, 1997 . Single definition of modularity does not cover all aspects . as with software quality, we must look at modularity from more than one point of view . Requirements on a modular design method . five criteria, five rules, and five principles . criteria are independently aimed at characterizing modular design methods . rules follow from criteria . principles follow from criteria and rules Patterns of Software Development 15 Modularity: Five Criteria . A modular design method should satisfy five fundamental requirements: 1. Decomposability 2. Composability 3. Understandability 4. Continuity 5. Protection Patterns of Software Development 16 Criterion 1: Decomposability A software construction method satisfies Modular Decomposability if • it helps in the task of decomposing a software problem into a small number of less complex subproblems, connected by a simple structure, and independent enough to allow further work to proceed separately on each of them. Divide to conquer ... Patterns of Software Development 17 Criterion 1: Decomposability (continued) . Corollary of modular decomposability: division of labor (separation of concerns): . once you decompose a system into subsystems you should be able to distribute work on these subsystems among different groups . Difficult goal since it limits dependencies that might exist: . keep dependencies between subsytems to the bare minimum . dependencies must be known Patterns of Software Development 18 Criterion 2: Composability A design method satisfies Modular Composability if • it favours the production of software elements which may be freely combined with each other to produce new systems, possibly in environments quite different from the one in which they were initially developed. Compose to rule ... Patterns of Software Development 19 Criterion 2: Composability (continued) . The composability criterion yields software elements that will be sufficiently autonomous . I.e., sufficiently independent from the immediate goal that led to their existence . Context information removed or clearly identified . Serves reusability . the aim is to find ways to design software elements performing well- defined tasks and being usable in widely different contexts Patterns of Software Development 20 Criterion 2: Composability (continued) . Example: Unix shell conventions . Unix commands operate on sequential character streams as input, and produce an output with the same standard structure . This makes them composable through the | (pipe) operator: A | B represents a program which will take A’s input, have A process it, send the output to B as input, and have it processed by B Patterns of Software Development 21 Criterion 3: Understandability A method favours Modular Understandability if • it helps produce software in which a human reader can understand each module without having to know the others, or, at worst, by having to examine only a few of the others. Patterns of Software Development 22 Criterion 4: Continuity A method satisfies Modular Continuity if • in the software architectures that it yields, a small change in a problem specification will trigger a change of just one module, or a small number of modules. change in spec change in modules Patterns of Software Development 23 Criterion 4: Continuity (continued) . Example: symbolic constants . style rule: instead of using numerical or textual constants directly, rely on symbolic names . the actual values only appear in a constant definition . if the value changes, the only thing to update is the constant definition . This rule is a wise precaution for continuity since constants, in spite of their name, are remarkably prone to change . it also improves understandability Patterns of Software Development 24 Criterion 5: Protection A method satisfies Modular Protection if • it yields architectures in which the effect of an abnormal condition occurring at run- time in a module will remain confined to that module, or at worst will only propagate to a few neighbouring modules. (this does not address the avoidance or correction of errors, but the aspect directly relevant to modularity: their propagation) Patterns of Software Development 25 Criterion 5: Protection (continued) . Example: validating input at the source . making every module that inputs data also responsible for checking input data validity is good for modular protection (assertions) . design-by-contract . Counter-example: undisciplined exceptions . exceptions make it possible to decouple the algorithms for normal cases from the processing of erroneous cases . but they must be used carefully to avoid hindering modular protection Patterns of Software Development 26 Modularity: Five Rules . From the criteria, five
Recommended publications
  • Declarative Immutability in Java
    International Journal of Computer and Systems Engineering Volume 1 Issue 1 Article 4 July 2020 Declarative Immutability in Java John Crowley Boston College, University of Pennsylvania, [email protected] Follow this and additional works at: https://digitalcommons.fairfield.edu/ijcase Recommended Citation Crowley, John (2020) "Declarative Immutability in Java," International Journal of Computer and Systems Engineering: Vol. 1 : Iss. 1 , Article 4. Available at: https://digitalcommons.fairfield.edu/ijcase/vol1/iss1/4 This item has been accepted for inclusion in DigitalCommons@Fairfield by an authorized administrator of DigitalCommons@Fairfield. It is brought to you by DigitalCommons@Fairfield with permission from the rights- holder(s) and is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses, you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. For more information, please contact [email protected]. Declarative Immutability in Java Online at https://digitalcommons.fairfield.edu/ijcase/ Published by Fairfield University, DigitalCommons@Fairfield © 2020 Vol. 1, No. 1, 2020 Declarative Immutability in Java by John D. Crowley ABSTRACT A pervasive mechanism is proposed to declare that variables and object instances are mutable or immutable, and whether methods mutate instances. These declarations are integral to the type structure of the language and allow the developer to declare, and the reader (and compiler) to determine, if a variable or instance is immutable (even if other instances of the Class are mutable) or that an instance is immutable throughout the application (a Pure instance).
    [Show full text]
  • Scala for the Impatient Second Edition This Page Intentionally Left Blank Scala for the Impatient Second Edition
    Scala for the Impatient Second Edition This page intentionally left blank Scala for the Impatient Second Edition Cay S. Horstmann Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at [email protected] or (800) 382–3419. For government sales inquiries, please contact [email protected]. For questions about sales outside the United States, please contact [email protected]. Visit us on the Web: informit.com/aw Library of Congress Control Number: 2016954825 Copyright © 2017 Pearson Education, Inc. All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
    [Show full text]
  • The Pragmatic Programmer Your Journey to Mastery
    Extracted from: The Pragmatic Programmer your journey to mastery 20th Anniversary Edition Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo The Pragmatic Programmer your journey to mastery 20th Anniversary Edition Dave Thomas Andy Hunt Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. "The Pragmatic Programmer" and the linking g device are trademarks of The Pragmatic Programmers, LLC. The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at [email protected] or (800) 382-3419. For government sales inquiries, please contact [email protected]. For questions about sales outside the U.S., please contact [email protected].
    [Show full text]
  • Study on Eiffel
    Study on Eiffel Jie Yao Anurag Katiyar May 11, 2008 Abstract This report gives an introduction to Eiffel, an object oriented language. The objective of the report is to draw the attention of the reader to the salient features of Eiffel. The report explains some of these features in brief along with language syntax. The report includes some code snippets that were written in the process of learning Eiffel. Some of the more detailed tutorials, books and papers on Eiffel can be found at www.eiffel.com 1 Contents 1 Introduction 3 2 Eiffel Constructs and Grammar 3 2.1 ”Hello World” . 3 2.2 Data Types . 3 2.3 Classes . 3 2.4 Libraries . 4 2.5 Features . 4 2.6 Class relations and hierarchy . 4 2.7 Inheritance . 4 2.8 Genericity . 5 2.9 Object Creation . 5 2.10 Exceptions . 6 2.11 Agents and Iteration . 6 2.12 Tuples . 6 2.13 Typing . 6 2.14 Scope . 7 2.15 Memory Management . 7 2.16 External software . 7 3 Fundamental Properties 7 3.1 ”Has” Properties . 8 3.2 ”Has no” Properties . 9 4 Design principles in Eiffel 10 4.1 Design by Contract . 10 4.2 Command Query Separation . 11 4.3 Uniform Access Principle . 11 4.4 Single Choice Principle . 11 5 Compilation Process in Eiffel 11 6 Exception Handling in the compiler 12 7 Garbage Collection for Eiffel 12 7.1 Garbage Collector Structure . 12 7.2 Garbage Collector in Action . 13 8 Eiffel’s approach to typing 13 8.1 Multiple inheritance .
    [Show full text]
  • Software Quality / Modularity
    Software quality EXTERNAL AND INTERNAL FACTORS External quality factors are properties such as speed or ease of use, whose presence or absence in a software product may be detected by its users. Other qualities applicable to a software product, such as being modular, or readable, are internal factors, perceptible only to computer professionals who have access to the actual software text. In the end, only external factors matter, but the key to achieving these external factors is in the internal ones: for the users to enjoy the visible qualities, the designers and implementers must have applied internal techniques that will ensure the hidden qualities. EXTERNAL FACTORS Correctness: The ability of software products to perform their tasks, as defined by their specification. Correctness is the prime quality. If a system does not do what it is supposed to do, everything else about it — whether it is fast, has a nice user interface¼ — matters little. But this is easier said than done. Even the first step to correctness is already difficult: we must be able to specify the system requirements in a precise form, by itself quite a challenging task. Robustness: The ability of software systems to react appropriately to abnormal conditions. Robustness complements correctness. Correctness addresses the behavior of a system in cases covered by its specification; robustness characterizes what happens outside of that specification. There will always be cases that the specification does not explicitly address. The role of the robustness requirement is to make sure that if such cases do arise, the system does not cause catastrophic events; it should produce appropriate error messages, terminate its execution cleanly, or enter a so-called “graceful degradation” mode.
    [Show full text]
  • Polymorphic Identifiers: Uniform Resource Access in Objective-Smalltalk
    Polymorphic Identifiers: Uniform Resource Access in Objective-Smalltalk Marcel Weiher Robert Hirschfeld Hasso Plattner Institute, University of Potsdam Hasso Plattner Institute, University of Potsdam [email protected] [email protected] Abstract compose these identifiers, use them on the LHS and RHS and In object-oriented programming, polymorphic dispatch of opera- partially use them for indirect access. Computational abstraction tions decouples clients from specific providers of services and al- is handled separately. lows implementations to be modified or substituted without affect- Object-oriented programming languages such as Smalltalk, ing clients. Java and Objective-C mostly maintain the distinction between The Uniform Access Principle (UAP) tries to extend these qual- computational and storage abstraction, with polymorphism and ities to resource access by demanding that access to state be indis- most other abstraction mechanisms only applying to computational tinguishable from access to operations. Despite language features abstraction. Access to storage, when not mediated via a method, supporting the UAP, the overall goal of substitutability has not been defeats encapsulation and makes code brittle against changes or achieved for either alternative resources such as keyed storage, files subclassing, which is why convention moved toward having all or web pages, or for alternate access mechanisms: specific kinds of access to state (instance variables) mediated by methods. resources are bound to specific access mechanisms and vice versa. The Uniform Access Principle (UAP) [22] was coined by Meyer Changing storage or access patterns either requires changes to both to formalize this convention: access to state should be indistin- clients and service providers and trying to maintain the UAP im- guishable from computation.
    [Show full text]
  • Object Oriented Programming Objects What's Interesting
    Object Oriented Programming Objects • An object consists of • Primary object-oriented language concepts − hidden or private part − dynamic lookup Hidden part ◊ instance variables / − encapsulation feature1 . data members − inheritance ◊ possibly, also some private feature2 . − subtyping functions • OO program − • Program organization public part − Creates a “root object” − Organize concepts into objects and relationships between them ◊ public operations, or member ◊ which may create other objects − Build program to be extensible functions, or methods, or ◊ which, in turn, may create other “messages” ◊ Both open and closed objects ... ◊ possibly, also some public − Objects • Comparison instance variables ◊ send messages to / invoke − Objects as closures? • In Eiffel terminology: methods on / apply features of other objects features L. Dillon, CSE 452, Fall 2008 1 L. Dillon, CSE 452, Fall 2008 2 What’s interesting about this? Why study Eiffel? • Universal encapsulation construct • Completely object-oriented approach from start to finish − Flight simulator • Design by contract (DBC) method − File system • Language mechanisms supporting OO and DBC − Database − Classes, objects, assertions, contracts, ... − − Window Single & multiple inheritance with ◊ redefinition − List ◊ undefinition − Integer ◊ renaming − Genericity: contrained & unconstrained • Metaphor usefully ambiguous − Uniform type system: safe covariance − sequential or concurrent computation − Agents (power of functional programming in OO) − “Once” mechanisms − distributed, synchronous
    [Show full text]
  • Eiffel and C++ Are Statically Typed, Class- Based Object-Oriented Languages
    EEiiffeffell aanndd CC++++ A comparison between two Object-Oriented languages Tom Van Cutsem CCllaasssseess aanndd OObbjjeecctsts Both Eiffel and C++ are statically typed, class- based object-oriented languages. Both regard class definitions as type definitions. Both make a clear distinction between classes and objects. Eiffel is a pure object-oriented language, C++ is impure (multi-paradigm). CCllaasssseess aanndd OObbjjeecctsts CC++++ State encapsulated in ‘data members’. Behaviour encapsulated in ‘memberfunctions’. Manual memory Management Four so called ‘special member functions’: the constructor, the destructor, the copy constructor and the assignment operator. CCllaasssseess aanndd OObbjjeecctsts EEiiffeffell Automatic Garbage Collection Eiffel classes consist of features: class HELLO create make feature make is -- Print a simple message. do io.put_string ("Hello World") io.put_new_line end end -- class HELLO CCllaasssseess aanndd OObbjjeecctsts EEiiffeffell Two viewpoints on features. From the viewpoint of the defining class, a feature is an attribute, a function or a procedure. From the viewpoint of the client class, a feature is a command or a query. Client Supplier Procedure Command Function Feature Query Attribute CCllaasssseess aanndd OObbjjeecctsts EEiiffeffell The client class does not see the difference between attribute access and a parameterless function call: the Uniform Access Principle myBalance := myAccount.balance implemented as an attribute class ACCOUNT feature balance: INTEGER end CCllaasssseess aanndd OObbjjeecctsts EEiiffeffell The client class does not see the difference between attribute access and a parameterless function call: the Uniform Access Principle myBalance := myAccount.balance implemented as a function class ACCOUNT feature -- an instance variable thebalance: INTEGER feature -- access the balance balance is do balance := thebalance end CCllaasssseess aanndd OObbjjeecctsts In C++, classes without ancestors become the root of a new hierarchy.
    [Show full text]
  • Applying Aspect-Oriented Software Development to Middleware Frameworks
    APPLYING ASPECT-ORIENTED SOFTWARE DEVELOPMENT TO MIDDLEWARE FRAMEWORKS TAL COHEN APPLYING ASPECT-ORIENTED SOFTWARE DEVELOPMENT TO MIDDLEWARE FRAMEWORKS RESEARCH THESIS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY TAL COHEN SUBMITTED TO THE SENATE OF THE TECHNION — ISRAEL INSTITUTE OF TECHNOLOGY ADAR, 5767 HAIFA FEBRUARY 2007 THIS RESEARCH THESIS WAS DONE UNDER THE SUPERVISION OF DR. JOSEPH (YOSSI) GIL IN THE DEPARTMENT OF COMPUTER SCIENCE I would like to thank the many people who have directly or indirectly helped me during the long period of research. I thank my supervisor, Yossi Gil, who never ceased to amaze me; my friend and co-student Itay Maman, who greatly helped in large parts of this research; Prof. Shmuel Katz, who first introduced me to the world of aspect-oriented programming; Omer Barkol, who was a wonderful office-mate these last few years; Prof. Ron Pinter, who advised and encouraged; and lastly, Yardena Kolet, the final authority in the CS faculty. This work is dedicated to my family: to my parents, Rachel and Nahum; to my beloved wife Irit; and to my two wonderful children, Stav and Yuval: May you always have rea- sons for joy! THE GENEROUS FINANCIAL HELP OF THE TECHNION IS GRATEFULLY AC- KNOWLEDGED. Contents List of Figures v List of Tables ix Abstract 1 1 Introduction 3 1.1 Why Existing Solutions Are Broken . 6 1.1.1 Limitations of the Services-Based Solution . 6 1.1.2 Limitations of Existing AOP Solutions . 7 1.1.3 Marrying J2EE with AOP . 9 1.2 Contributions and Outline .
    [Show full text]
  • (Programming) Addison-Wesley
    I l@ve RuBoard Front Matter Table of Contents About the Author Pragmatic Programmer, The: From Journeyman to Master Andrew Hunt David Thomas Publisher: Addison Wesley First Edition October 13, 1999 ISBN: 0-201-61622-X, 352 pages Straight from the programming trenches, The Pragmatic Programmer cuts through the increasing specialization and technicalities of modern software development to examine the core process--taking a requirement and producing working, maintainable code that delights its users. It covers topics ranging from personal responsibility and career development to architectural techniques for keeping your code flexible and easy to adapt and reuse. Read this book, and you’ll learn how to: Fight software rot; Avoid the trap of duplicating knowledge; Write flexible, dynamic, and adaptable code; Avoid programming by coincidence; Bullet-proof your code with contracts, assertions, and exceptions; Capture real requirements; Test ruthlessly and effectively; Delight your users; Build teams of pragmatic programmers; and Make your developments more precise with automation. Written as a series of self-contained sections and filled with entertaining anecdotes, thoughtful examples, and interesting analogies, The Pragmatic Programmer illustrates the best practices and major pitfalls of many different aspects of software development. Whether you’re a new coder, an experienced programmer, or a manager responsible for software projects, use these lessons daily, and you’ll quickly see improvements in personal productivity, accuracy, and job satisfaction. You’ll learn skills and develop habits and attitudes that form the foundation for long-term success in your career. You’ll become a Pragmatic Programmer. I l@ve RuBoard I l@ve RuBoard Pragmatic Programmer, The: From Journeyman to Master Foreword Preface Who Should Read This Book? What Makes a Pragmatic Programmer? Individual Pragmatists, Large Teams It's a Continuous Process How the Book Is Organized What's in a Name? 1.
    [Show full text]
  • 3 Modularity
    3 Modularity From the goals of extendibility and reusability, two of the principal quality factors introduced in chapter 1, follows the need for flexible system architectures, made of autonomous software components. This is why chapter 1 also introduced the term modularity to cover the combination of these two quality factors. Modular programming was once taken to mean the construction of programs as assemblies of small pieces, usually subroutines. But such a technique cannot bring real extendibility and reusability benefits unless we have a better way of guaranteeing that the resulting pieces — the modules — are self-contained and organized in stable architectures. Any comprehensive definition of modularity must ensure these properties. A software construction method is modular, then, if it helps designers produce software systems made of autonomous elements connected by a coherent, simple structure. The purpose of this chapter is to refine this informal definition by exploring what precise properties such a method must possess to deserve the “modular” label. The focus will be on design methods, but the ideas also apply to earlier stages of system construction (analysis, specification) and must of course be maintained at the implementation and maintenance stages. As it turns out, a single definition of modularity would be insufficient; as with software quality, we must look at modularity from more than one viewpoint. This chapter introduces a set of complementary properties: five criteria, five rules and five principles of modularity which, taken collectively, cover the most important requirements on a modular design method. For the practicing software developer, the principles and the rules are just as important as the criteria.
    [Show full text]
  • PART VI: Appendices
    PART VI: Appendices This part complements the main material of the book by providing an introduction to four important programming languages: Java, C#, C++ and (briefly) C. The presentations are specifically designed for the readers of this book: they do not describe the four languages from scratch, but assume you are familiar with the concepts developed in the preceding chapters, and emphasize the differences with the Eiffel notation that they use. The descriptions do not cover the languages in their entirety, but include enough to enable you to start programming in these languages if you have mastered the concepts of the rest of this book. For practical use of a language system (compiler, interpreter, integrated development environment) you will of course need the corresponding reference information, from books or online. Since not every reader will want to learn every one of the languages, each of the first three appendices can be read independently; this also means, since Java, C# and C++ share a number of characteristics (due to the influence of C and, for the first two, C++), that if you do read all three you will encounter some repetitions. The fourth appendix is a short overview of C presented as a subset of C++, and hence assumes that you have read the C++ appendix. The last appendix presents basic information about using the EiffelStudio environment, to help with the examples of this book and the Traffic software. The appendices are followed by the list of picture credits and the index. A An introduction to Java (from material by Marco Piccioni) A.1 LANGUAGE BACKGROUND AND STYLE Java was introduced in 1995, the result of an internal research project at Sun Microsystems led by James Gosling (other key contributors include Bill Joy, Guy Steele and Gilad Bracha).
    [Show full text]