Imaging Neural Activity in Worms, Flies and Mice with Improved Gcamp Calcium Indicators
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Optical Inhibition of Larval Zebrafish Behaviour with Anion
Mohamed et al. BMC Biology (2017) 15:103 DOI 10.1186/s12915-017-0430-2 METHODOLOGY ARTICLE Open Access Optical inhibition of larval zebrafish behaviour with anion channelrhodopsins Gadisti Aisha Mohamed1, Ruey-Kuang Cheng1, Joses Ho2, Seetha Krishnan3, Farhan Mohammad4, Adam Claridge-Chang2,4 and Suresh Jesuthasan1,2,4* Abstract Background: Optical silencing of activity provides a way to test the necessity of neurons in behaviour. Two light-gated anion channels, GtACR1 and GtACR2, have recently been shown to potently inhibit activity in cultured mammalian neurons and in Drosophila. Here, we test the usefulness of these channels in larval zebrafish, using spontaneous coiling behaviour as the assay. Results: When the GtACRs were expressed in spinal neurons of embryonic zebrafish and actuated with blue or green light, spontaneous movement was inhibited. In GtACR1-expressing fish, only 3 μW/mm2 of light was sufficient to have an effect; GtACR2, which is poorly trafficked, required slightly stronger illumination. No inhibition was seen in non-expressing siblings. After light offset, the movement of GtACR-expressing fish increased, which suggested that termination of light- induced neural inhibition may lead to activation. Consistent with this, two-photon imaging of spinal neurons showed that blue light inhibited spontaneous activity in spinal neurons of GtACR1-expressing fish, and that the level of intracellular calcium increased following light offset. Conclusions: These results show that GtACR1 and GtACR2 can be used to optically inhibit neurons in larval zebrafish with high efficiency. The activity elicited at light offset needs to be taken into consideration in experimental design, although this property can provide insight into the effects of transiently stimulating a circuit. -
Imaging Thoughts - an Investigation of Neural Circuits Encoding Changes in Behavior in Zebrafish By
Imaging thoughts - an investigation of neural circuits encoding changes in behavior in zebrafish by Claire Oldfield A dissertation submitted in partial satisfaction of the requirement for the degree of Doctor of Philosophy in Neuroscience In the Graduate Division of the University of California, Berkeley Committee in charge: Professor Ehud Y. Isacoff, Chair Professor Dan E. Feldman Professor Marla Feller Professor Craig Miller Summer 2016 Abstract Imaging thoughts - an investigation of neural circuits encoding changes in behavior in zebrafish By Claire Oldfield Doctor of Philosophy in Neuroscience University of California, Berkeley Professor Ehud Isacoff, Chair Experience influences how we perceive the world, how we interact with our environment, and how we develop. In fact, almost all animals can modify their behavior as a result of experience. Psychologists have long distinguished between different forms of learning and memory, and later determined that they are encoded in distinct brain areas. Neuroscientists dating back to Santiago Ramón y Cajal suggested that learning and memory might be encoded as changes in synaptic connections between neurons, but it wasn’t until the second half of the 20th century that experimental evidence corroborated this idea. Specific firing patterns of neurons during learning results in strengthening or weakening of synapses, and morphological modifications that can lead to long lasting changes in neural circuits. The molecular mechanisms that drive these changes are remarkably conserved across vertebrates. However, understanding how synaptic plasticity is integrated at a network level remains a big challenge in neuroscience. Relatively few studies have focused on how neural circuits encode changes in behavior in a natural context. -
Optogenetic Neuronal Silencing in Drosophila During Visual Processing Alex S
www.nature.com/scientificreports OPEN Optogenetic Neuronal Silencing in Drosophila during Visual Processing Alex S. Mauss , Christian Busch & Alexander Borst Optogenetic channels and ion pumps have become indispensable tools in neuroscience to manipulate Received: 26 April 2017 neuronal activity and thus to establish synaptic connectivity and behavioral causality. Inhibitory Accepted: 6 October 2017 channels are particularly advantageous to explore signal processing in neural circuits since they permit Published: xx xx xxxx the functional removal of selected neurons on a trial-by-trial basis. However, applying these tools to study the visual system poses a considerable challenge because the illumination required for their activation usually also stimulates photoreceptors substantially, precluding the simultaneous probing of visual responses. Here, we explore the utility of the recently discovered anion channelrhodopsins GtACR1 and GtACR2 for application in the visual system of Drosophila. We frst characterized their properties using a larval crawling assay. We further obtained whole-cell recordings from cells expressing GtACR1, which mediated strong and light-sensitive photocurrents. Finally, using physiological recordings and a behavioral readout, we demonstrate that GtACR1 enables the fast and reversible silencing of genetically targeted neurons within circuits engaged in visual processing. Genetically expressed optogenetic ion channels and pumps confer light sensitivity to neurons of interest, allow- ing to control their activity on demand1,2. Such techniques have become powerful means to establish neuronal connectivity as well as causal relationships between neuronal activity and behavior. Remote control of neuronal activity by light has many advantages: it is fast, reversible, easy to parameterize and applicable in intact behaving animals. However, it poses challenges for studies in visual systems, since here endogenous light-sensing cells, the photoreceptors, are also activated by light required for optogenetic control. -
Contribution of Apical and Basal Dendrites of L2/3 Pyramidal Neurons to Orientation Encoding in Mouse V1 Jiyoung Park1,4*†, Athanasia Papoutsi3†, Ryan T
bioRxiv preprint doi: https://doi.org/10.1101/566588; this version posted March 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Contribution of Apical and Basal Dendrites of L2/3 Pyramidal Neurons to Orientation Encoding in Mouse V1 Jiyoung Park1,4*†, Athanasia Papoutsi3†, Ryan T. Ash2,4, Miguel A. Marin2, Panayiota Poirazi3* & Stelios M. Smirnakis4* 1Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 2Department of Neuroscience, Baylor College of Medicine, Houston, Texas 3Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology Hellas (FORTH), Vassilika Vouton, Heraklion, Crete, Greece 4Brigham and Women’s Hospital and Jamaica Plain VA Hospital, Harvard Medical School, Boston, MA †Equal contribution. * Correspondence: [email protected], [email protected], [email protected] Abstract: Pyramidal neurons integrate synaptic inputs from basal and apical dendrites to generate stimulus-specific responses. It has been proposed that feed-forward inputs to basal dendrites drive a neuron’s stimulus preference, while feedback inputs to apical dendrites sharpen selectivity. However, how a neuron’s dendritic domains relate to its functional selectivity has not been demonstrated experimentally. We performed 2-photon dendritic micro-dissection on layer- 2/3 pyramidal neurons in mouse primary visual cortex. We found that removing the apical dendritic tuft did not alter orientation-tuning. Furthermore, orientation-tuning curves were remarkably robust to the removal of basal dendrites: ablation of 2-3 basal dendrites was needed to cause a small shift in orientation preference, without significantly altering tuning width. -
A Striatal Interneuron Circuit for Continuous Target Pursuit
ARTICLE https://doi.org/10.1038/s41467-019-10716-w OPEN A striatal interneuron circuit for continuous target pursuit Namsoo Kim1, Haofang E. Li1, Ryan N. Hughes1, Glenn D.R. Watson1, David Gallegos2, Anne E. West 2, Il Hwan Kim3 & Henry H. Yin1,2 Most adaptive behaviors require precise tracking of targets in space. In pursuit behavior with a moving target, mice use distance to target to guide their own movement continuously. 1234567890():,; Here, we show that in the sensorimotor striatum, parvalbumin-positive fast-spiking inter- neurons (FSIs) can represent the distance between self and target during pursuit behavior, while striatal projection neurons (SPNs), which receive FSI projections, can represent self- velocity. FSIs are shown to regulate velocity-related SPN activity during pursuit, so that movement velocity is continuously modulated by distance to target. Moreover, bidirectional manipulation of FSI activity can selectively disrupt performance by increasing or decreasing the self-target distance. Our results reveal a key role of the FSI-SPN interneuron circuit in pursuit behavior and elucidate how this circuit implements distance to velocity transforma- tion required for the critical underlying computation. 1 Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA. 2 Department of Neurobiology, Duke University, Durham, NC 27708, USA. 3 Department of Anatomy and Neurobiology, University of Tennessee Health and Science Center, Memphis, TN 27708, USA. Correspondence and requests for materials should be addressed to H.H.Y. (email: [email protected]) NATURE COMMUNICATIONS | (2019) 10:2715 | https://doi.org/10.1038/s41467-019-10716-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10716-w hether pursuing a prey or approaching a mate, natural pursuit performance: the worse the pursuit performance, the Wbehaviors often involve continuous tracking of targets more self-velocity lags self-target distance, as expected if distance in space. -
Wide. Fast. Deep. Recent Advances in Multi-Photon Microscopy of in Vivo Neuronal Activity
TechSights Wide. Fast. Deep. Recent Advances in Multi- Photon Microscopy of in vivo Neuronal Activity https://doi.org/10.1523/JNEUROSCI.1527-18.2019 Cite as: J. Neurosci 2019; 10.1523/JNEUROSCI.1527-18.2019 Received: 2 March 2019 Revised: 27 September 2019 Accepted: 27 September 2019 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2019 the authors 1 Wide. Fast. Deep. Recent Advances in Multi-Photon Microscopy of in vivo Neuronal Activity. 2 Abbreviated title: Recent Advances of in vivo Multi-Photon Microscopy 3 Jérôme Lecoq1, Natalia Orlova1, Benjamin F. Grewe2,3,4 4 1 Allen Institute for Brain Science, Seattle, USA 5 2 Institute of Neuroinformatics, UZH and ETH Zurich, Switzerland 6 3 Dept. of Electrical Engineering and Information Technology, ETH Zurich, Switzerland 7 4 Faculty of Sciences, University of Zurich, Switzerland 8 9 Corresponding author: Jérôme Lecoq, [email protected] 10 Number of pages: 24 11 Number of figures: 6 12 Number of tables: 1 13 Number of words for: 14 ● abstract: 196 15 ● introduction: 474 16 ● main text: 5066 17 Conflict of interest statement: The authors declare no competing financial interests. 18 Acknowledgments: We thank Kevin Takasaki and Peter Saggau (Allen Institute for Brain Science) for providing helpful 19 comments on the manuscript; we thank Bénédicte Rossi for providing scientific illustrations. -
Improved Calcium Sensor Gcamp-X Overcomes the Calcium Channel Perturbations Induced by the Calmodulin in Gcamp
ARTICLE DOI: 10.1038/s41467-018-03719-6 OPEN Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP Yaxiong Yang 1,2,3,4, Nan Liu1,7, Yuanyuan He1, Yuxia Liu1, Lin Ge1, Linzhi Zou5, Sen Song1,4, Wei Xiong4,5 & Xiaodong Liu 1,2,3,4,5,6 2+ 1234567890():,; GCaMP, one popular type of genetically-encoded Ca indicator, has been associated with various side-effects. Here we unveil the intrinsic problem prevailing over different versions and applications, showing that GCaMP containing CaM (calmodulin) interferes with both gating and signaling of L-type calcium channels (CaV1). GCaMP acts as an impaired apoCaM 2+ 2+ and Ca /CaM, both critical to CaV1, which disrupts Ca dynamics and gene expression. We then design and implement GCaMP-X, by incorporating an extra apoCaM-binding motif, effectively protecting CaV1-dependent excitation–transcription coupling from perturbations. GCaMP-X resolves the problems of detrimental nuclear accumulation, acute and chronic Ca2+ dysregulation, and aberrant transcription signaling and cell morphogenesis, while still demonstrating excellent Ca2+-sensing characteristics partly inherited from GCaMP. In summary, CaM/CaV1 gating and signaling mechanisms are elucidated for GCaMP side- effects, while allowing the development of GCaMP-X to appropriately monitor cytosolic, submembrane or nuclear Ca2+, which is also expected to guide the future design of CaM- based molecular tools. 1 Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing 100084, China. 2 School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. 3 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 102402, China. -
Optical Inhibition of Zebrafish Behavior with Anion Channelrhodopsins
bioRxiv preprint doi: https://doi.org/10.1101/158899; this version posted July 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Optical inhibition of zebrafish behavior with anion channelrhodopsins Gadisti Aisha Mohamed1, Ruey-Kuang Cheng1, Joses Ho2, Seetha Krishnan3, Farhan Mohammad4, Adam Claridge-Chang2, 4 and Suresh Jesuthasan1, 2 1. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore. 2. Institute of Molecular and Cell Biology, Singapore. 3. Graduate School for Integrative Sciences and Engineering, National University of Singapore. 4. Duke-NUS Medical School, Singapore Abstract In behavioral analysis, optical electrical silencing provides a way to test neu- ronal necessity. Two light-gated anion channels, GtACR1 and GtACR2, have recently been shown—in neuronal culture and in Drosophila—to inhibit neu- rons potently. Here, we test the usefulness of these channels in zebrafish. When the GtACRs were expressed in motor neurons and actuated with blue or green light, fish spontaneous movement was inhibited. In GtACR1-expressing fish, only 3 µW/mm2 of light was sufficient to have an effect; GtACR2, which is poorly trafficked, required stronger illumination. After light offset, GtACR- expressing fish movement increased; this suggested that termination of light- induced neural inhibition may lead to depolarization. Consistent with this, two-photon imaging of spinal neurons showed that intracellular calcium also increased following light offset. The activity elicited at light offset needs to be taken into consideration in experimental design, although this property may help provide insight into the effects of stimulating a circuit transiently. -
GPCR-Based Dopamine Sensors—A Detailed Guide to Inform Sensor Choice for in Vivo Imaging
International Journal of Molecular Sciences Review GPCR-Based Dopamine Sensors—A Detailed Guide to Inform Sensor Choice for In Vivo Imaging 1,2, 3,4, 4,5, Marie A. Labouesse y, Reto B. Cola y and Tommaso Patriarchi * 1 Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; [email protected] 2 Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA 3 Anatomy and Program in Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland; [email protected] 4 Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland 5 Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland * Correspondence: [email protected]; Tel.: +41-044-635-59-21 These authors share equal co-first contribution. y Received: 10 September 2020; Accepted: 26 September 2020; Published: 28 October 2020 Abstract: Understanding how dopamine (DA) encodes behavior depends on technologies that can reliably monitor DA release in freely-behaving animals. Recently, red and green genetically encoded sensors for DA (dLight, GRAB-DA) were developed and now provide the ability to track release dynamics at a subsecond resolution, with submicromolar affinity and high molecular specificity. Combined with rapid developments in in vivo imaging, these sensors have the potential to transform the field of DA sensing and DA-based drug discovery. When implementing these tools in the laboratory, it is important to consider there is not a ‘one-size-fits-all’ sensor. Sensor properties, most importantly their affinity and dynamic range, must be carefully chosen to match local DA levels. -
Low-Cost Calcium Fluorometry for Long-Term Nanoparticle Studies In
www.nature.com/scientificreports OPEN Low‑cost calcium fuorometry for long‑term nanoparticle studies in living cells Connor L. Beck1, Clark J. Hickman1,2 & Anja Kunze 1* Calcium fuorometry is critical to determine cell homeostasis or to reveal communication patterns in neuronal networks. Recently, characterizing calcium signalling in neurons related to interactions with nanomaterials has become of interest due to its therapeutic potential. However, imaging of neuronal cell activity under stable physiological conditions can be either very expensive or limited in its long‑term capability. Here, we present a low‑cost, portable imaging system for long‑term, fast‑ scale calcium fuorometry in neurons. Using the imaging system, we revealed temperature‑dependent changes in long‑term calcium signalling in kidney cells and primary cortical neurons. Furthermore, we introduce fast‑scale monitoring of synchronous calcium activity in neuronal cultures in response to nanomaterials. Through graph network analysis, we found that calcium dynamics in neurons are temperature‑dependent when exposed to chitosan‑coated nanoparticles. These results give new insights into nanomaterial‑interaction in living cultures and tissues based on calcium fuorometry and graph network analysis. Imaging calcium dynamics in and between neurons is essential to analyse neural signalling and to better under- stand how drugs, metabolites, and neural treatments impact the plasticity of signalling in neural networks. Commercially available techniques to record calcium activity rely on the induction of a calcium-dependent fuorescent sensor and fuorescent-based high-resolution microscopy for both in vivo and in vitro applications 1. High-resolution optical microscopy, e.g., two-photon or confocal microscopy, has revealed valuable knowledge about subcellular calcium signalling2. -
Live Imaging of Calcium Dynamics During Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx
15026 • The Journal of Neuroscience, November 11, 2015 • 35(45):15026–15038 Development/Plasticity/Repair Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx X Mauricio Enrique Vargas,1,2 XYuya Yamagishi,3 Marc Tessier-Lavigne,3 and Alvaro Sagasti1 1Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, 2Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, and 3Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York 10065 Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. -
Dendritic Spines on Gabaergic Neurons Respond to Cholinergic Signaling in The
bioRxiv preprint doi: https://doi.org/10.1101/598714; this version posted April 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Dendritic spines on GABAergic neurons respond to cholinergic signaling in the Caenorhabditis elegans motor circuit. Andrea Cuentas-Condori1, Ben Mulcahy3, Siwei He2, Sierra Palumbos2, Mei Zhen3, *David M. Miller, III1,2 Affiliations 1. Department of Cell and Developmental BioloGy, Vanderbilt University, Nashville, Tennessee, 37212, USA. 2. Neuroscience ProGram, Vanderbilt University, Nashville, Tennessee, 37212, USA. 3. Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, M5G 1X5, Canada. *CorrespondinG author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/598714; this version posted April 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY (250 words) Dendritic spines are specialized postsynaptic structures that detect and inteGrate presynaptic siGnals. The shape and number of dendritic spines are reGulated by neural activity and correlated with learninG and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been previously reported in invertebrates, suGGestinG that the experimental advantaGes of smaller model orGanisms could be exploited to study the bioloGy of dendritic spines.