Submitted : July 9th , 2020 – Accepted : December 30 th , 2020 – Posted online : January 29 th , 202 1

To link and cite this article:

doi: 10.5710/AMGH.30.12.2020.3379

1 NEW RECORD OF THE VAMPIRE DESMODUS DRACULAE (CHIROPTERA) FROM

2 THE LATE PLEISTOCENE OF

3 NUEVO REGISTRO DE DESMODUS DRACULAE (CHIROPTERA) DEL PLEISTOCENO

4 TARDÍO DE ARGENTINA

5

6 SANTIAGO BRIZUELA*,1 and DANIEL A. TASSARA2

7 1Universidad Nacional de , CONICET, Departamento de Biología, Facultad de

8 Ciencias Exactas y Naturales, Mar del Plata, Argentina. Funes 3250, B7602AYJ Mar del Plata,

9 Argentina. [email protected]

10 2 Museo Municipal de Ciencias Naturales Pachamama, Niza 1065, B7609LNC Santa Clara del Mar,

11 Partido de Mar Chiquita, provincia de Buenos Aires, Argentina.

12

13 16 pag. (text + references); 3 figs.; 2 tables

14

15 Running Header: BRIZUELA AND TASSARA: LATE PLEISTOCENE VAMPIRE FROM

16 MIRAMAR

17 Short Description: The presence of Desmodus draculae, an extinct giant vampire bat, from the

18 Pleistocene of Buenos Aires is confirmed.

19 Corresponding author: Santiago Brizuela, [email protected]

20

21

22 Keywords. Vampire. Bat. Desmodontinae. Dentary. Miramar.

23 Palabras clave. Vampiro. Murciélago. Desmodontinae. Dentario. Miramar

1 24

25 BATS (Chiroptera) are one of the most diverse groups of extant mammals (Amador et al., 2018), but

26 this diversity is not represented in their fossil record (Teeling et al., 2005). In Argentina there are

27 presently four bat families represented, all Yangochiroptera, with more than 60 species (Díaz et al.,

28 2016). In contrast with this diversity, the fossil record of bats in Argentina is scarce and patchy

29 (Czaplewski, 2010), mostly accounting for very few, isolated, partial elements (Table 1).

30 One interesting record of fossil bats of Argentina is that of an isolated upper canine from the

31 late Holocene of southeast Buenos Aires referred to Desmodus cf. D. draculae (Pardiñas & Tonni,

32 2000), a large, extinct vampire. This species had a large late Pleistocene–late Holocene distribution

33 from Mexico to Argentina (see Ubilla et al., 2019). However there is some taxonomic uncertainty

34 (cf., aff.) regarding the specific assignation of the fossils of D. draculae at its latitudinal limits. Here

35 new fossil material from Late Pleistocene sediments outcropping near the city of Miramar

36 (Argentina) (Fig. 1) is described and discussed.

37 Institutional Abbreviations. CML, Colección Mastozoológica, Fundación Miguel Lillo,

38 Univerdidad Nacional de Tucumán, Tucumán, Argentina; LIEB-PV, Laboratorio de

39 Investigaciones en Evolución y Biodiversidad, Universidad Nacional de la Patagonia “San Juan

40 Bosco”, Esquel, Argentina; MLP, Museo de , Universidad Nacional de La Plata, La Plata,

41 Argentina. MPH-P, Museo Municipal Punta Hermengo, Collección Paleontológica, Miramar,

42 Argentina.

43 MATERIALS AND METHODS

44 The fossil here described is housed in the Colección Paleontológica of the Museo Municipal

45 Punta Hermengo (MPH-P). It was studied under stereoscope microscope, and compared to available

46 reference materials (Diaemus youngi CML 1343; Desmodus rotundus CML 8664), specimens

47 available in MorphoSource (https://www.morphosource.org), and bibliography. Images were

48 obtained by Scanning Electron Microscope (SEM) at the Laboratorio de Microscopía Electrónica of

2 49 the Universidad Nacional de Mar del Plata. Osteology follows Giannini et al. (2006) with

50 comments from Rädulet (2006). Systematics follows that of Cirranello et al. (2016). Dentary

51 measurements from Morgan et al. (1988), Barquez et al. (1999), and Davis et al. (2010) were used

52 for comparison.

53 Stratigraphical provenance. The fossil site is located 700 m north of the mouth of the La

54 Ballenera stream (38° 19' 25.60" S; 57° 56' 6.74" W), 9 km south of Punta Hermengo (Miramar

55 city) (Fig. 1). The fossil was located in situ within a cave section (1.2 m diameter) which is

56 attributed to a Mylodontidae. The cave section is situated near the top of a 5 m sea cliff in which six

57 stratigraphic units can be recognized (Fig. 2). The lower deposits, units A–C, which are topped by

58 calcrete levels (C 1–3), correlated to units A–D of Tonni & Fidalgo (1982), units I–III of Alberdi et

59 al. (2006), and units A–E of Soibelzon et al. (2010). The faunistic content of these units

60 corresponds to Ensenadan Age/stage. The top units D–E, and the calcrete level atop (C 4) are

61 considered as Lujanian sensu lato, and could correlate to units E and F of Tonni & Fidalgo (1982).

62 Unit F is where the cave develops, this unit is transgressive to units D–E, and the surface form

63 where MPH-P 302 was recovered is at the level of unit E, close to C4. Unite F is assigned to the

64 Lujanian sensu stricto Stage/Age given that it correlates to unit G of Tonni & Fidalgo (1982) and

65 unit IV of Alberdi et al. (2006), which correspond to the Equus (Amerhippus) neogeus biozone

66 (Cione & Tonni, 2005). This is consistent with Glyptodon reticulatus shield fragments (MPH-P 034)

67 recovered in the superior part of unit F, above the cave.

68

69 SYSTEMATIC PALEONTOLOGY

70

71 Order CHIROPTERA Blumenbach, 1779

72 Family PHYLLOSTOMIDAE Gray, 1825

73 Subfamily DESMODONTINAE Wagner, 1840

3 74 Tribe DESMODONTINI Wagner, 1840

75 Genus Desmodus Wied-Neuwied, 1826

76 Type species. Desmodus rotundus (Geoffroy, 1810)

77 Desmodus draculae Morgan et al., 1988

78 Figure 3

79 Geographic occurrence. Mexico, Belize, Venezuela, Brazil, Uruguay, and Argentina. 20° N–38° S.

80 Stratigraphic occurrence. late Pleistocene–late Holocene.

81 Referred material. MPH-P 302, right dentary with no preserved teeth.

82 DESCRIPTION

83 A robust right dentary with the corpus mandibulae half the total length of the mandible (LM

84 = 18.79 mm). The margo alveolaris (length of mandible tooth row = 8.63 mm) presents six alveoli

85 (i2, c1, 3 postcanine), the three anterior (i1, i2, c) are circular–subcircular while the following are

86 oval, labiolingually compressed (pm1, pm2, m1). All alveoli have only one root. Posterior to the

87 last one there is a shallow depression.

88 In lateral view (Fig. 3.1) the dentary is excavated (not the coronoid process), with a strong

89 ventral ridge that extends posteriorly from the anterior premolar. In this same view, the most

90 posteromedial part of the symphysis is exposed, projecting posteroventrally a very short distance

91 from the ventral border of the dentary. Two foramina are observed, the anterior (below i2) and the

92 posterior (below pm1) mental foramina. The ramus mandibulae is close to quadrangular in outline.

93 The linea obliqua mandibulae of the coronoid process (= processus coronoideus) raises vertically

94 (close to 20° from the vertical), the coronoid process is of the same height of the condyloid process

95 (processus condylaris/condyloideus). Between these processes the incisura mandibulae is straight,

96 horizontal. The dorsal posterior border of the ramus mandibulae is vertical up to the small non

97 nominatus processus (see Rädulet, 2006 for synonyms) which is located at mid height (above the

4 98 margo alveolarias plane). Ventral to the non nominatus processus the posterior border of the ramus

99 mandibulae is inclined for a short distance.

100 Medially (Fig. 3.2) the symphysis is irregular, interdigitating with its counterpart. There is a

101 diastema from the symphysial articulation to the first incisive. Above the symphysis, lingual to both

102 incisors there is no evident pocket/depression for the upper incisors. In this view two foramina are

103 exposed. An anterior one, very small, on the symphysis below the canine. A second larger one, the

104 mandibular foramen, at the end of a groove in the center of the ramus mandibulae. In this view the

105 coronoid process is excavated. At mid height on the posterior part of the ramus mandibulae is a

106 short, horizontal crest that precedes the non nominatus processus. Ventral to the non nominatus

107 processus the posterior border of the dentary curves medially.

108 DISCUSSION

109 The general morphology of MPH-P 302 resembles that of vampire bats (Desmodontinae).

110 Among extant vampire bats the fossil shares with the Desmodontini (Desmodus and Diaemus) the

111 dentary dental formula (2121), the diastema between incisors, and an unfused symphysis, unlike

112 Diphylla (Allen, 1896; Burns, 1972; Davis et al., 2010; Scheffer et al., 2015). The fossil and

113 Desmodus present the coronoid process as tall as the condyloid process, with a straight, horizontal

114 incisura mandibulae, unlike Diaemus in which the coronoid process is taller than the condyloid

115 process. Furthermore, the diastema between left and right incisors is inferred large, more like that of

116 Desmodus (Scheffer et al., 2015). Desmodus is the only genus of Desmodontinae with known fossil

117 species (D. archaeodaptes, D. draculae, and D. stocki) (see Orihuela (2011) for discussion on D.

118 puntajudensis). Among all Desmodus spp. the fossil shares the large size (Table 2) and, more

119 significantly (autapomorphies), the straight ventral border and absence of pocket/depression behind

120 incisors (to accommodate the upper incisors), with Desmodus draculae (Morgan et al., 1988).

121 Therefore, from the aforementioned, MPH-P 302 is referred to D. draculae.

5 122 Unlike MPH-P 302, previous mid latitude records were assigned to D. draculae with caution

123 (cf. and aff.). This dentary removes the reasonable doubts and confirms the presence of this species

124 at mid latitudes (≈38 °S, Argentina) during the Late Pleistocene. At present the Desmontini have the

125 southernmost distribution of the Desmodontinae, where both Diaemus youngi and Desmodus

126 rotundus reach Argentina (Fig. 1). The southernmost present distribution of the Desmodontinae (D.

127 rotundus) in South America reaches north shore of the Río de la Plata (≈35° S) (Barquez et al.,

128 1999; Queirolo, 2016), more than 400 km north of La Ballenara site (≈38° S). Thus, the

129 environmental conditions of La Ballenera site would have been different from those of today to

130 allow the presence of Desmodus. The wide distributional limits of D. rotundus correlate, in the

131 North and South America, with the 10º C winter isotherm, beyond which cave temperature would

132 require much more energy to maintain normal body temperature (McNab, 1973). Therefore, mean

133 winter temperature during the Late Pleistocene at southeast Buenos Aires should have been at

134 minimum 10° C, a warmer condition than that of today. Associated rodent remains from the same

135 cave filing sediments (Cavia sp. MPH-P 224 and Reithrodon auritus MPH-P 210) suggest and open

136 environment, during a warm humid period, during the Late Pleistocene (Tonni et al., 1999, Pardiñas,

137 2004).

138 Desmodus rotundus is gregarious, know to form large colonies (up to 5000 individuals) with

139 smaller satellite ones, and small groups of up to 10 individuals (Barquez et al., 1999; Sampedro

140 Marín et al., 2008). It is also known to use a wide variate of temporal refuges (Barquez et al., 1999).

141 At least two main types of large refugees where available for bats during the Pleistocene in Buenos

142 Aires province: natural rock (orthoquartzite) shelters in the Tandilia and Ventaian mountain ranges

143 and large megafaunal excavated caves in loess (Dondas et al., 2009). In both of these types of

144 shelters bat fossils have been recovered (Quintana, 2016, this study) (Table 1). According to Frank

145 et al. (2011) in general extant bats are less frequent in sedimentary rock caves (i.e., megafaunal

146 caves) than in plutonic or volcanic ones. In particularly D. rotundus prefers caves with high relative

6 147 humidity and many clustered speleothems (Barros et al., 2020). It is not clear where D. draculae

148 congregated or roosted in the Late Pleistocene of southeast Buenos Aires, but this record suggests

149 that they could have exploited the large caves of giant extinct sloths (Mylodontidae), some of which

150 have been suggested as possible prey of these vampires (Trajano & De Vivo, 1991; Arroyo-

151 Cabrales & Polaco, 2008). An alternative hypothesis is that this dentary corresponds to prey

152 remains of a Strigiform (owls) which are known to prey on vampire bats (Barquez et al., 1999).

153 More data is needed to confirm or reject either hypothesis.

154 In summary MPH-P 302 presents autapomorphies and other characters that allow its referral

155 to D. draculae, and thus confirming the presence of this vampire at mid latitude (≈38° S) during the

156 Late Pleistocene of South America. The presence in southeastern Buenos Aires of D. draculae and

157 the associated rodents is indicative of warmer, a possibly more humid environmental conditions that

158 must have occurred during the last interglacial. This warmer period would have allowed the

159 migration of these taxa from populations further north, as evidenced by rodents as Clyomys sp.

160 (Vucetich et al., 1997), Plesiaguti sp. (Vucetich & Verzi, 2002), Bibimys sp, Scapteromys sp., and

161 Kunsia sp. (Pardiñas et al., 2004) from tropical-subtropical latitudes that also reached 38° S latitude

162 during the warm pulses of the Pleistocene. With the development of the Last Glaciation (85ka,

163 Rabassa et al., 2005) the paleoenvironmental condition would have been adverse (specially

164 regarding temperature) to D. draculae at these latitudes. Despite its wide distribution D. draculae

165 did not survive past the late Holocene, its extinction could be associated, among other things, with

166 the megafaunal extinction, upon which they would have preyed.

167 ACKNOWLEDGMENTS

168 Authors would like to thank G. S. Morgan, N. J. Czaplewski, an anonymous reviewer as well as the

169 editorial team for their comments and suggestion which allowed us to improve our manuscript. We

170 are also a grateful to R. Barquez and P. Gaudioso for facilitating images of reference materials, also

171 to N. J. Czaplewski, J. Arroyo-Cabrales, and C. A. Iudica for facilitating bibliography. We also

7 172 thank D. Boh and C. A. Quintana for their predisposition and assistance. M. Oppedisano assisted us

173 with the SEM. Finllay, SB would like to thank A. Elbakyan. The fossil was recovered under

174 Collection permit 2018-3-P-213-1 of the Dirección Provincial de Museos y Preservación

175 Patrimonial de la Provincia de Buenos Aires.

8 176

177 REFERENCES

178 Alberdi, M. T., Prado, J. L. & Favier-Dubois, C. M. (2006). Nuevo registro de Hippidion principale

179 (Mammalia, Perissodactyla) del Pleistoceno de Mar del Sur, Argentina. Revista Española de

180 Paleontología, 21(2), 105–113.

181 Allen, H. (1896). Notes on the vampire bat (Diphylla ecaudata), with special reference to its

182 relationships with Desmodus rufus. Proceedings of the United States National Museum, 18,

183 769–777.

184 Amador, L. I., Moyers Arévalo, R. L., Almeida, F. C., Catalano, S. A. & Giannini, N. P. (2018). Bat

185 Systematics in the Light of Unconstrained Analyses of a Comprehensive Molecular

186 Supermatrix. Journal of Mammalian Evolution, 25(1), 37–70.

187 Arroyo-Cabrales, J. & Polaco, J. (2008). Fossil bats from Mesoamérica. Arquivos Do Museu

188 Nacional, Rio de Janeiro, 66, 155–160.

189 Barquez, R. M., Mares, M. A. & Braun, J. K. (1999). The Bats of Argentina. Special Publications

190 of the Museum of Texas Tech University, 42, 1–275.

191 Barros, J. de S., Bernard, E., & Ferreira, R. L. (2020). Ecological preferences of neotropical cave

192 bats in roost site selection and their implications for conservation. Basic and Applied Ecology,

193 45, 31–41.

194 Blumenbach, J. F. (1779–1780). Handbuch der Naturgeschichte. J. C. D. Gottingen.

195 Burns, R. J. (1972). Crecimiento y dentición del murciélago vampiro en cautiverio. Técnica

196 Pecuaria en México, 20, 33–37.

197 Cione, A. L. & Tonni, E. P. (2005). Bioestratigrafía basada en mamíferos del Cenozopico Superior

198 de la provincia de Buenos Aires, Argentina. Geología y Recursos Minerales de La Provincia

199 de Buenos Aires. Relatorio Del XVI Congreso Geológico Argentino Cap. XI: 183–200.

9 200 Cirranello, A., Simmons, N. B., Solari, S. & Baker, R. J. (2016). Morphological Diagnoses of

201 Higher-Level Phyllostomid Taxa (Chiroptera: Phyllostomidae). Acta Chiropterologica 18(1),

202 39–71.

203 Czaplewski, N. J. (2010). Bats (Mammalia: Chiroptera) from Gran Barranca (early Miocene,

204 Colhuehuapian), Chubut Province, Argentina. In R. H. Madden, A. A. Carlini, M. G.

205 Vucetich & R. F. Kay (Eds.). The Paleontology of Gran Barranca Evolution and

206 Environmental Change Through the Middle Cenozoic of Patagonia (pp 240–252). Cambridge

207 University Press.

208 Davis, J. S., Nicolay, C. W. & Williams, S. H. (2010). A comparative study of incisor procumbency

209 and mandibular morphology in vampire bats. Journal of Morphology, 271(7), 853–862.

210 Díaz, M. M., Solari, S., Aguirre, L. F., Aguilar, L. M. S., & Barquez, R. M. (2016). Clave de

211 idenificación de los murciélagos de Sudamérica. Publicación Especial N°2 Programa de

212 Conservacion de Los Muerciélagos de Argentina, 1–157.

213 Dondas, A., Isla, F. I., & Carballido, J. L. (2009). Paleocaves exhumed from the Miramar

214 Formation (Ensenadan Stage-age, Pleistocene), Mar del Plata, Argentina. Quaternary

215 International, 210, 44–50.

216 Frank, H. T., Buchmann, F. C. S., Lima, L. G., Lopes, R. P., Fornari, M., & Caron, F. (2011).

217 Interdisciplinaridade aplicada a paleotocas. Anais 31º Congresso Brasileiro de Espeleologia

218 (pp. 541–548). Ponta Grossa.

219 Giannini, N. P., Wible, J. R., & Simmons, N. B. (2006). On the cranial osteology of Chiroptera. 1,

220 Pteropus (Megachiroptera, Pteropodidae). Bulletin American Museum of Natural History, 295,

221 1–134.

222 Geoffroy, É. (1810). Sur les Phyllostomes et les Mégadermes. Annales du Muséum d'histoire

223 naturelle, 15, 157–198.

10 224 Gray, J. E. (1825). Outline of an attempt at the disposition of the Mammalia into tribes and families

225 with a list of the genera apparently appertaining to each tribe. Annals of Philosophy New

226 Series. 10, 337–344.

227 Iudica, C. A., Arroyo-Cabrales, J., McCarthy, T. J., & Pardiñas, U. F. J. (2003). An insect-

228 eating bat (Mammalia: Chiroptera) from the Pleistocene of Argentina. Current Research

229 in the Pleistocene, 20, 101–103.

230 McNab, B. K. (1973). Energetics and the distribution of vampires. Journal of Mammalogy,

231 54(1), 131–144.

232 Merino, M. L., Lutz, M. A., Verzi, D. H., & Tonni, E. P. (2007). The fishing bat Noctilio

233 (Mammalia, Chiroptera) in the Middle Pleistocene of central Argentina. Acta

234 Chiropterologica, 9(2), 401–407.

235 Morgan, G. S., Linares, O. J., & Ray, C. E. (1988). New species of fossil vampire bats

236 (Mammalia, Chiroptera, Desmodontinae) from Florida and Venezuela. Proceedings of

237 the Biological Society of Washington, 101(4), 912–928.

238 Orihuela, J. (2011). Skull variation of the vampire bat Desmodus rotundus (Chiroptera:

239 Phyllostomidae): Taxonomic implications for the Cuban fossil vampire bat Desmodus

240 puntajudensis. Chiroptera Neotropical, 17(1), 963–976.

241 Pardiñas, U. F. J. (2004). Roedores sigmodontinos (Mammalia: Rodentia: Cricetidae) y otros

242 micromamíferos como indicadores de ambientes hacia el Ensenadense cuspidal en el

243 sudeste de la provincia de Buenos Aires (Argentina). Ameghiniana, 41(3), 437–450.

244 Pardiñas, U. F. J., & Tonni, E. P. (2000). A giant vampire (Mammalia, Chiroptera) in the Late

245 Holocene from the Argentinean pampas: paleoenvironmental significance.

246 Palaeogeography, Palaeoclimatology, Palaeoecology, 160(3), 213–221.

11 247 Pardiñas, U. F. J., Cione, A. L., San Cristóbal, J., Verzi, D. H., & Tonni, E. P. (2004). A new

248 Last Interglacial continental vertebrate assemblage in central-eastern Argentina. Current

249 Research in the Pleistocene, 21, 111–112.

250 Queirolo, D. 2016. Diversidade e padrões de distribuição de mamíferos dos campos do

251 Uruguai e sul do Brasil. Boletín de la Sociedad Zoológica del Uruguay (2a Época), 25,

252 92–246.

253 Quintana, C. A. 2016. Tafonomía de los microvertebrados del sitio arqueológico Cueva Tixi

254 (Pleistoceno tardío–Holoceno tardío), Tandilia Oriental (provincia de Buenos Aires,

255 Argentina). Publicación Electrónica de la Asociación Paleontológica Argentina, 16(1),

256 14–51.

257 Rabassa, J., Coronato, A. M., & Salemme, M. (2005). Chronology of the Late Cenozoic

258 Patagonian glaciations and their correlation with biostratigraphic units of the Pampean

259 region (Argentina). Journal of South American Earth Sciences, 20(1), 81–103.

260 Rädulet, N. (2006). Comparative anatomy of the mandible in nine bat species (Mammalia:

261 Chiroptera) from Brazil (South America). Travaux Du Muséum National d’Histoire

262 Naturelle «Grigore Antipa», 49, 375–382.

263 Sampedro Marín, A. C., Martínez Bravo, C. M., Mercado Ricardo, A. M., Osorio Ozuna, S.

264 C., Otero Fuentes, Y. L., & Santos Espinoza, L. M. (2008). Refugios, período

265 reproductivo y composición social de las poblaciones de Desmodus rotundus (Geoffroy,

266 1810) (Chiroptera: Phyllostomidae), en zonas rurales del departamento de Sucre,

267 Colombia. Caldasia, 30(1), 127–134.

268 Sauthier, D. E. U., Teta, P., Formoso, A. E., Bernardis, A., Wallace, P., & Pardiñas, U. F. J.

269 (2013). Bats at the end of the world: New distributional data and fossil records from

270 Patagonia, Argentina. Mammalia, 77(3), 307–315.

12 271 Scheffer, K. C., de Barros, R. F., Iamamoto, K., Mori, E., Asano, K. M., Achkar, S. M.,

272 Estevez García, A. I., Lima, J. Y. de O., & Fahl, W. de O. (2015). Diphylla ecaudata y

273 Diaemus youngi: Biología y comportamiento. Acta Zoológica Mexicana, 31(3), 436–

274 445.

275 Soibelzon, E., Tonni, E. P., & Bidegain, J. C. (2010). The Quaternary Outcrops of Punta

276 Hermengo (, Argentina): Magnetostratigraphy, Biostratigraphy

277 and the Loss of Paleontological Heritage. Current Researches in the Pleistocene, 27,

278 151–154.

279 Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O’Brien, S. J., & Murphy, W. J. (2005).

280 A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record.

281 Science, 307, 580–584.

282 Tejedor, M. F., Czaplewski, N. J., Goin, F. J., & Aragón, E. (2005). The oldest record of

283 South American bats. Journal of Vertebrate Paleontology, 25(4), 990–993.

284 Tonni, E. P., & Fidalgo, F. (1982). Geología y paleontología de los sedimentos del

285 Pleistoceno en el área de Punta Hermengo (Miramar, provincia de Buenos Aires,

286 República Argentina): aspectos paleoclimáticos. Ameghiniana, 19(1-2), 79–108.

287 Tonni, E. P., Cione, A. L., & Figini, A. J. (1999). Predominance of arid climates indicated by

288 mammals in the pampas of Argentina during the Late Pleistocene and Holocene.

289 Palaeogeography, Palaeoclimatology, Palaeoecology, 147, 257–281.

290 Trajano, E., & De Vivo, M. (1991). Desmodus draculae Morgan, Linares & Ray, 1988,

291 reported for southeastern Brasil, with paleoecological comments (Phyllostomidae,

292 Desmodontinae). Mammalia, 55(3), 456–459.

293 Ubilla, M., Gaudioso, P., & Perea, D. (2019). First fossil record of a bat (Chiroptera,

294 Phyllostomidae) from Uruguay (Plio-Pleistocene, South America): a giant

295 desmodontine. Historical Biology 0: 1–9. (published online)

13 296 Vucetich, M. G., & Verzi, D. H. 2002. First record of Dasyproctidae (Rodentia) in the

297 Pleistocene of Argentina. Paleoclimatic implication. Palaeogeography,

298 Palaeoclimatology, Palaeoecology, 178, 67–73.

299 Vucetich, M. G., Verzi, D. H., & Tonni, E. P. (1997). Paleoclimatic implications of the

300 presence of Clyomys (Rodentia, Echimyidae) in the Pleistocene of central Argentina.

301 Palaeogeography, Palaeoclimatology, Palaeoecology, 128, 207–214.

302 Wagner, E. P. (1840). Die Säugethiere in Abbildungen nach der Natur. Abteilungen Die

303 Affen und Flederthiere, München. 1(Suppl):1–551.

304 Wied-Neuwied, M. A. P. Z. (1826). Beiträge zur Naturgeschichte von Brasilien. Verzeichniss

305 de Amphibien, Säugethiere, und Vögel, welche auf eine Reise Zwischen dem 13ten und

306 dem 23sten Grade südlicher Breite im östlichen Brasilien beobachtect wurden. II.

307 Verlage des Landes-Industrie-Comptoirs, Weimar. 1–620.

14 308

15 309

310 Figure Captions

311

312 Figure 1. Distribution of Desmodontini in Argentina and fossil bats of Buenos Aires province. 1)

313 Argentina (in grey) with distribution of Desmodus rotundus (opened circles), Diaemus youngi

314 (close circles) and bat fossils of Buenos Aires province (black squares). 2) Closeup of southeastern

315 Buenos Aires fossil bat sites: 1, Desmodus draculae, La Ballenera site (late Pleistocene); 2,

316 Desmodus cf. D. draculae, Centinela del Mar (late Holocene); 3, Noctilio, (middle

317 Pleistocene); 4, Chiroptera indet., Cueva Tixi (late Holocene). Scale equals 500 km.

318

319 Figure 2. Schematic profile of La Ballenera fossil site.

320

321 Figure 3. Desmodus draculae from the Late Pleistocene of Buenos Aires. Dentary (MPH-P 302)

322 in lateral (1) and medial (2) views. Abbreviations: AMF, anterior mental foramen; CON.P,

323 condyloid process; COR.P, coronoid process; DI, diastema; IN.M, incisura mandibulae; NNP, non

324 nominatus processus; PMF, posterior mental foramen; SYM, symphysis. Scale equals 2 mm.

16

TABLE 1. Fossil bats of Argentina. Taxa Age Locality/Province elements reference Chiroptera indet. Late Holocene Cueva Tixi, Buenos humerus Quintana (2016) Aires (pers. com SB) Desmodus cf. D. draculae Late Holocene Centinela del Mar, isolated C Pardiñas and Tonni Buenos Aires (2000) Histiotus macrotus Late Holocene Several localities in several, not specified Sauthier et al. (2013) Chubut and Santa Cruz Myotis chiloensis Late Holocene Several localities in several, not specified Sauthier et al ., (2013) Chubut

Tadarida brasiliensis Late Holocene Several localities in several, not specified Sauthier et al . (2013) Chubut

? Histiotus Late Pleistocene Epullán Grande Cave, partial left dentary Iudica et al . (2003) Neuquén (MLP-96-V23-1) Desmodus draculae Late Pleistocene La Ballenera, right dentary this study Buenos Aires (MPH-P 302) Noctilio Middle Necochea, Buenos right C Merino et al . (2007) Pleistocene Aires (MLP 07-V-1-1)

Mormopterus barrancae Early Miocene Gran Barranca, partial left dentary Czaplewski (2010) Chubut (MLP-93-IX-18-15);

left m1 (MLP-93-IX- 18-18) Mormopterus sp. Early Miocene Gran Barranca, partial right dentary Czaplewski (2010) Chubut (MLP-93-IX-18-19)

Indet. Phyllostomidae Early Miocene Gran Barranca, right m3 (MLP-93- Czaplewski (2010) Chubut IX-18-16) Indet. family Eocene Laguna Fría, Chubut left m2 (LIEB-PV Tejedor et al . (2005) 999); right talonid (LIEB-PV 1000)

TABLE 2. Comparative measurements of Desmodontinae dentary characters. sp ML LMdT CoH Diaemus youngi 15.1 3.9 - Diphylla ecaudata 13.2±0.2 - - Desmodus rotundus 15.8 ± 0.4 4.8 ± 0.09 6.3 ± 0.26 MPH-P 302 18.79 8.63 8.28 Desmodus draculae 21.9 8,5 8,3 9.4 Desmodus stocki 17.4±0.26 5.3±0.1 6.7±0.21 Data in mm from Morgan et al. , 1988, Barquez et al. , 1999; Davis et al. , 2010. Abbreviations: CoH, Coronoid Height; LM, Length of Mandible; LmdT, Length of mandible tooth row.