Heat Stress 1 18 March 2021

Total Page:16

File Type:pdf, Size:1020Kb

Heat Stress 1 18 March 2021 Heat Illness Response Guideline Presented in order of decreasing urgency. One or more indicators in a category indicate a positive determination for that category. Observations Determination and Action Severe Fatigue or Vomiting – Heat Stroke Watch for other signs of heat stroke Emergency Response while starting treatment for severe Begin aggressive cooling (cover in ice or place in cold/ice heat exhaustion. water bath). If ice is not available, other methods of cooling are flushing water over person from hose or shower; or Erratic / Irritable Behavior keep the skin wet and fanning. Confusion / Disorientation Garbled / Gibberish Speech Call emergency services and advise them that it is a heat Hysteria / Delirium / Apathy stroke case. Collapse Shivering Convulsions Unconscious Wobbly Walking Severe Heat Exhaustion Slow Reaction Times Move to air-conditioned space, encourage water/electrolyte Severe Fatigue drink if able, and allow to lay down. Severe Muscle Cramps Vomiting or Collapse without Any Optional: Cover head and shoulders with a towel soaked in Signs of Heat Stroke ice water. Person may say they have Watch for signs of heat stroke. Severe Fatigue Loss of Appetite If recovery is not progressing in 15 min, arrange for medical Nausea treatment and continue to watch for possible heat stroke. Headache Blurred Vision Person may say they feel Mild Heat Exhaustion Tired / Fatigued Inform supervisor Thirsty Recovery in cool area Weak Drink water and/or electrolyte drink Dizzy Lightheaded If symptoms persist after 15 min, treat as severe heat Muscle cramps exhaustion 16 March 2021 Occupational Heat Stress 1 18 March 2021 Alternate Titles Occupational Heat Stress More than you could ever want to know Somethings Old about heat stress Somethings New or Bernard – A one trick pony Thomas E Bernard | 18 March 2021 1 2 Special Thanks Fla AIHA Those with whom I have worked • USF and sponsors of my work Heat-Related Illness Are Real • CDC/NIOSH and Sunshine Education and Research Center • ACGIH® and ISO Committees to which I contribute • Faculty, staff, students and the many study participants • Candi D. Ashley and Ximena P. Garzón Notice: All opinions are mine 3 4 NIOSH Case for Heat Stress Management Rate of Heat-Related Illness CDC (2008) Occupation Incidence per 100,000 FTE • 423 deaths from 1992 through 2006 (28/y) Full Year Summer • Rate 20x higher for crop workers than all others Letter Carriers 81.3 176.5 Outdoors Fire Protection 80.8 158.8 BLS (2011) Roofers 59.0 161.2 • 4,190 lost time heat stress cases in 2010 Highway Construction 44.8 105.6 Increases with • Most fatalities among outdoor workers Underground Mining – Hard Rock 33.7 Hot Weather • Cases likely to be underreported Surface Mining – Stone 12.9 20 OSHA Citations in 2012 and 2013 Landscaping 11.6 25.6 Construction 6.8 21.3 • Most were deficient programs Surface Miners – Coal 5.3 • For fatalities: Usually no provisions for acclimatization All Other Industries 1.7 4.7 5 6 © 2021 Thomas E Bernard Occupational Heat Stress 2 18 March 2021 Exertional Heat Illness Carry-Over Effect Probability of exertional heat illness increases with environmental Previous Day heat and humidity • US Marine Training • Outdoor (mostly agriculture): 75% of heat disorders above 28°C- • Gulf Clean-up WBGT • Meta-analysis: Warm/Hot Work v Neutral: RR = 4) • Aluminum smelting (ORModHS = 20 and ORHighHS = 80) Multiple Day • Sports (OR = 7 between below and above 23 °C-WBGT) • Emergency Department Cases from Five States (3- to 4-day influence) • Outdoor work (Gulf Cleanup: OR = 1.4/°C-WBGT for >20°C) • Military training (OR = 4 between below and above 23 °C-WBGT) • Aluminum plants in Middle East (3-day weighted average) That is, there is an exposure-response relationship 7 8 200 Increased Accidents 150 Loss of Productivity Moderate Work Increase in Unsafe Behaviors Increase 100 1.8 50 1.7 Percent Light Work 1.6 0 Acute injuries in Aluminum Smelter 23 25 27 29 31 33 WBGT (ºC) 1.5 Speed (m/s) See also analysis of published papers 1.4 by June Spector, et al. (2019) that 1.3 demonstrates relationship between 0.1 1 10 100 1000 10000 ambient heat stress and frequency of Air Permeability severe injury 9 10 Synthesis of Key Elements Heat Stress Management NIOSH Criteria Document ACGIH® TLV® for Heat stress and strain documentation Bernard Vision of Prof. Jacques Malchaire, Belgium Key Heat Stress Management Elements My personal experience and practice A blend of old and new wine in new bottles 11 12 © 2021 Thomas E Bernard Occupational Heat Stress 3 18 March 2021 Topics for Today Written Policies Basics of Heat Stress Written Policies Heat Stress Exposure Assessment Interventions 13 14 Written Policies Program Context Fundamental principle of occupational health and safety Part of your continuous improvement program programs In the context of heat stress • Policies Specific to Heat Stress Management Program • Individual Discretion over Exposure • Discussed under heat stress hygiene practice • Part of administrative controls (See Tier 2 Interventions) • Acclimatization • Discussed under heat stress hygiene practices 15 16 Heat Exchange Biophysics of heat stress and job risk factors The Basics 17 18 © 2021 Thomas E Bernard Occupational Heat Stress 4 18 March 2021 Heat Flow Heat Balance Equation S = (M-W) + R + C + K – E S Heat storage rate (M-W) Net rate of metabolic heat generation R Net rate of radiant heat exchange C Net rate of convective heat exchange K Net rate of conductive heat exchange E Rate of evaporative heat loss 19 20 Metabolic Rate -- M Convection -- C Work demands are met by W Depends on converting chemical energy • Air to Skin Temperature Gradient (M) to mechanical energy (W) • Air Motion with a great deal of internal • Clothing heat generated in the process. M 0.6 C = hc vair (Tdb – Tsk) M >> W Clothing Effect, hc • Insulation (Inversely) H = M-W • Effective Porosity 21 22 Radiant Heat -- R Maximum Evaporative Cooling Depends on Depends on • Mean Radiant Temperature • Water Vapor Pressure (Humidity) Gradient • Clothing • Air Motion • Clothing Emax can be also limited by R = hr (Tr – Tsk) 0.6 Emax = vair (Psk – Pa) / Re sweating capacity Clothing Effect, hr Clothing Effect, Re • Insulation (Inversely) • Water Vapor Permeability of Fabric (Inversely) • Effective Porosity (Inversely) 23 24 © 2021 Thomas E Bernard Occupational Heat Stress 5 18 March 2021 Heat Balance Equation So, what makes the environment hot? S = (M-W) + R + C + K - E High If S = 0, W=0, and K=0, then Humidity High Air Ereq = M + R + C where Ereq < Emax Temperature Belding & Hatch Heat Stress Index: and Speed HSI = (Ereq/Emax)x100 Hot Surfaces S = Emax - Ereq (Increased Rate of Radiant Heat) 25 26 Clothing Effects Job Risk Factors for Heat Stress Fabric Water Vapor Environment Permeability • Humidity (Water Vapor Pressure) Convective Fabric Permissibility Work (Metabolic) Demands Insulation • Fabric • Construction Clothing Requirements Thermal • Evaporative Resistance Characteristics of Clothing 27 28 Measurement of Heat Stress Temperatures Psychrometric Natural Dry Bulb Wet Bulb Wet Bulb Globe Environment Tdb Tpwb Tnwb Tg Metabolic Rate Clothing 29 30 © 2021 Thomas E Bernard Occupational Heat Stress 6 18 March 2021 Wet Bulb Globe Temperature Estimations from Weather Data WBGT = 0.7 Tnwb + 0.3 Tg There are methods to estimate Tpwb, Tnwb and Tg from weather data. Except in direct sunlight, WBGT = 0.7 Tnwb + 0.2 Tg + 0.1 Tdb WBGT Index reflects effects of air temperature, humidity, hot surfaces and air motion. That is, C+R and Emax. 31 32 Metabolic Rate Table Values Tables Type of Work Metabolic Rate • Need to apply to the job of interest [Watts] • Most job descriptions and content are not current and thus the estimates are poor Passing the buck 125 Categories Dragging your heels 150 • Judgment about demands relative to descriptors Bending over backwards 200 Component Analysis Beating around the bush 250 Predictive Equations Jumping to conclusions 300 Heart Rate Running around in circles 350 Oxygen Consumption (called indirect calorimetry) 33 34 Metabolic Rate Categories ISO Estimation Method Light (Reference Rate: 180 W) Components of Metabolic Rate • < 235 W • Basal (Base) Metabolism (B) • sitting, standing, light hand/arm work Most Common • Posture (P) Moderate (Reference Rate: 300 W) • 235 - 350 W Approach • Type of Work (W) • walking, moderate lifting • Walking (D) Heavy (Reference Rate: 415 W) • Climbing (C) • 350 - 470 W • heavy materials handling Very Heavy (Reference Rate: 520 W) Potential Error • 470 - 800 W • Broad Range Total Metabolic Rate (M) = B + P + W + D + C • pick and shovel work • Over-Estimation 35 36 © 2021 Thomas E Bernard Occupational Heat Stress 7 18 March 2021 Predictive Equations and Others Early Thought on Clothing Effects Published equations that relate activity (or external work) to What WBGT metabolic rate. makes the heat stress Relationship between heart rate and metabolic demands the same? • Requires some care and no heat stress 28 °C-WBGT ?? °C-WBGT Assessment of oxygen consumption Moderate Work Moderate Work • Requires expertise and specialized equipment Work Clothes Protective Clothing 37 38 Tc v WBGT and Clothing Clothing Adjustment Values CAV Clothing Ensemble [°C-WBGT] Work Clothes 0 Cloth Coveralls 0 Double Layer Cloth Clothing 3 Shorts and Short-Sleeved Shirt -1 SMS Coveralls 0.5 Polyolefin Coveralls 1 Limited-Use Vapor-Barrier Coveralls 11 Note: Respirator Face Masks Have No Effect 39 40 Effective WBGT Time-Weighted Average WBGTeff1 x t1 + ••• + WBGTeffn x tn WBGTmeasured/estimated
Recommended publications
  • A Web Survey to Evaluate the Thermal Stress Associated with Personal Protective Equipment Among Healthcare Workers During the COVID-19 Pandemic in Italy †
    International Journal of Environmental Research and Public Health Article A Web Survey to Evaluate the Thermal Stress Associated with Personal Protective Equipment among Healthcare Workers during the COVID-19 Pandemic in Italy † Alessandro Messeri 1,2,* , Michela Bonafede 3 , Emma Pietrafesa 3, Iole Pinto 4, Francesca de’Donato 5, Alfonso Crisci 1, Jason Kai Wei Lee 6,7,8,9,10,11 , Alessandro Marinaccio 3 , Miriam Levi 12 , Marco Morabito 1,2 and on behalf of the WORKLIMATE Collaborative Group ‡ 1 Institute of Bioeconomy, National Research Council (IBE-CNR), 50019 Florence, Italy; [email protected] (A.C.); [email protected] (M.M.) 2 Centre of Bioclimatology, University of Florence (UNIFI), 50144 Florence, Italy 3 Occupational and Environmental Medicine, Epidemiology and Hygiene Department, Italian Workers’ Compensation Authority (INAIL), 00143 Rome, Italy; [email protected] (M.B.); [email protected] (E.P.); [email protected] (A.M.) 4 Physical Agents Sector, Regional Public Health Laboratory, 53100 Siena, Italy; [email protected] 5 Department of Epidemiology Lazio Regional Health Service, ASL ROMA 1, 00147 Rome, Italy; [email protected] 6 Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; [email protected] 7 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Citation: Messeri, A.; Bonafede, M.; Singapore S117593, Singapore 8 Pietrafesa, E.; Pinto, I.; de’Donato, F.; Global Asia Institute, National University of Singapore, Singapore S119076, Singapore 9 Crisci, A.; Lee, J.K.W.; Marinaccio, A.; N.1 Institute for Health, National University of Singapore, Singapore S117456, Singapore 10 Institute for Digital Medicine, National University of Singapore, Singapore S117456, Singapore Levi, M.; Morabito, M.
    [Show full text]
  • Heat Stress and PPE During COVID-19: Impact on Health Care Workers’ Performance, Safety and Well-Being in NHS Settings
    medRxiv preprint doi: https://doi.org/10.1101/2020.09.22.20198820; this version posted September 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Heat Stress and PPE during COVID-19: Impact on health care workers’ performance, safety and well-being in NHS settings. Sarah L Davey1*., Ben J Lee1., Timothy Robbins2,3., Harpal Randeva2, C. Doug Thake1. 1 Occupational and Environmental Physiology Group, Centre for Sport, Exercise and Life Sciences, (CSELS), Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom. 2 University Hospitals Coventry & Warwickshire NHS Trust, Coventry, United Kingdom. 3 Institute of Digital Healthcare, WMG, University of Warwick, Coventry, United Kingdom Corresponding author: Sarah Davey E-mail: [email protected] Key words: PERSONAL PROTECTIVE EQUIPEMENT; HEAT STRESS; HEALTH CARE WORERS, SARS-COV-2 (COVID-19); EXTREME ENVIRONMENTS; HEAT-RELATED ILLNESS. NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.09.22.20198820; this version posted September 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Abstract Background: The impermeable nature of PPE worn by health care workers (HCWs) during the SARS-CoV-2 (COVID-19) pandemic can potentiate heat stress which may negatively impact the performance, safety and well-being of HCWs.
    [Show full text]
  • Occupational Exposure to Heat and Hot Environments
    Criteria for a Recommended Standard Occupational Exposure to Heat and Hot Environments DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Cover photo by Thinkstock© Criteria for a Recommended Standard Occupational Exposure to Heat and Hot Environments Revised Criteria 2016 Brenda Jacklitsch, MS; W. Jon Williams, PhD; Kristin Musolin, DO, MS; Aitor Coca, PhD; Jung-Hyun Kim, PhD; Nina Turner, PhD DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health This document is in the public domain and may be freely copied or reprinted. Disclaimer Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations of websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these websites. Ordering Information This document is in the public domain and may be freely copied or reprinted. To receive NIOSH documents or other information about occupational safety and health topics, contact NIOSH at Telephone: 1-800-CDC-INFO (1-800-232-4636) TTY: 1-888-232-6348 E-mail: [email protected] or visit the NIOSH website at www.cdc.gov/niosh. For a monthly update on news at NIOSH, subscribe to NIOSH eNews by visiting www.cdc.gov/ niosh/eNews. Suggested Citation NIOSH [2016]. NIOSH criteria for a recommended standard: occupational exposure to heat and hot environments. By Jacklitsch B, Williams WJ, Musolin K, Coca A, Kim J-H, Turner N.
    [Show full text]
  • Implementing Sensor Technology Applications for Workplace Health
    Spook et al. BMC Public Health (2019) 19:1100 https://doi.org/10.1186/s12889-019-7364-2 RESEARCHARTICLE Open Access Implementing sensor technology applications for workplace health promotion: a needs assessment among workers with physically demanding work Sander Mathijn Spook, Wendy Koolhaas, Ute Bültmann and Sandra Brouwer* Abstract Background: Workers with physically demanding work may be at risk for injury, illness or other adverse health outcomes due to exposure to different occupational hazards, especially at higher age. Sensor technology applications may be useful in the workplace to unobtrusively measure and monitor work exposures and provide workers with real- time feedback or access to data on demand. Many aspects might impede the implementation of sensor technology applications in the workplace, which should be taken into consideration for a successful implementation. Moreover, needs and preferences of workers regarding the use of sensor technology applications during work performance need to be identified. Therefore, the aim of this study was to identify worker needs and preferences regarding the use of sensor technology applications in the workplace. Methods: Four on-site focus group sessions were conducted in four different companies among workers with physically demanding work (n = 30). Semi-structured interview schedules were used to identify which work exposures should be measured, by which kind of sensor technology applications, under which (pre)conditions, how to motivate long-term use of sensor technology applications, and which type of feedback is preferred. For data analysis, a content-analysis with an inductive approach was performed. Results: Participants mentioned that they want to use wearable sensor technology applications to measure and monitor physical job demands, occupational heat stress, noise and fatigue.
    [Show full text]
  • Complete Issue (PDF)
    Abstracts Eliminating Occupational Disease: areas in the country. The study studied 40 small scale industries, and collected 40 water samples (potable) for cyanide and mer- Translating Research into Action cury which are used in mining. Questionnaire-guided interviews EPICOH 2017 and work analysis covering mining practices and risk exposures were conducted, as well as chemical analysis through gas chro- 28–31 August 2017, Edinburgh, UK matography. Results of the study showed unsafe conditions in the industries such as risk of fall during erection and dismantling of scaffolds, guard rails were not provided in scaffoldings, man- Poster Presentation ual extraction of underground ores, use of explosives, poor visi- bility in looking for ores to take out to surface, exposure to Pesticides noise from explosives, and to dust from the demolished struc- tures. Mine waste was drained into soil or ground and/or rivers and streams. The most common health problems among miners 0007 ASSESSMENT OF PESTICIDE EXPOSURE AND were hypertension (62%), followed by hypertensive cardiovascu- OCCUPATIONAL SAFETY AND HEALTH OF FARMERS IN lar disease due to left wall ischemia (14%). Health symptoms THE PHILIPPINES such as dermatitis, and peripheral neuropathy were noted and Jinky Leilanie Lu. National Institutes of Health, Institute of Health Policy and Development these can be considered as manifestations of chronic cyanide poi- Studies, University of the Philippines Manila, Manila, The Philippines soning, further, aggravated by improper use of protective equip- ment. For the environmental samples of potable water, 88% and 10.1136/oemed-2017-104636.1 98% were positive with mercury and cyanide respectively. About 52% of drinking water samples exceeded the TLV for mercury Aims This is a study conducted among 534 farmers in an while 2% exceeded the TLV for cyanide.
    [Show full text]
  • Heat Stress & Occupational Health
    New Understandings in Heat Stress Emma Moynihan, MPH Doctoral Candidate – Johns Hopkins University Advisor: Gurumurthy Ramachandran, PhD Outline • Introduction • Heat Stress & Occupational Health • Measuring Heat Stress • Worker Protections for Heat Stress • Application of Remote Sensing to Determine Heat Stress • Conclusion 1 Introduction Sengupta, S & Frank, B.L (August 25, 2020). Heat Smoke and COVID are Battering the Workers who Feed America. The New York Times. Heat, Smoke and Covid Are Battering the Workers Who Feed America - The New York Times (nytimes.com) ©2015,© 2020,© Johns2014, Johns JohnsHopkins Hopkins Hopkins University. University. University. All All rights rights All reserved.rightsreserved. reserved. Heat Stress & Occupational Health • Nearly half (47%) of all jobs in the United States require working outside, where exposure to heat stress greatest, for some part of the workday.2 • Workers at particularly high risk to heat stress include: • Agricultural Workers • Emergency Responders • Firefighters • Construction & utility Workers • Healthcare workers • Transportation Workers3 Figure one: OSH Heat-Related Deaths and Extreme Heat Projections4 ©2015,© 2020,© Johns2014, Johns JohnsHopkins Hopkins Hopkins University. University. University. All All rights rights All reserved.rightsreserved. reserved. 3 What is Heat Stress? Universal Thermal Climate Index Heat Exhaustion Heat Stress Heat Stroke Wet Bulb Globe Temperature Heat Strain Heat Index ©2015,© 2020,© Johns2014, Johns JohnsHopkins Hopkins Hopkins University. University.
    [Show full text]
  • Occupational Exposure to Heat and Hot Environments
    1 2 Criteria for a Recommended Standard: 3 Occupational Exposure to Heat and Hot 4 Environments 5 6 Revised Criteria 2013 7 8 9 10 11 12 13 14 15 16 17 18 19 DEPARTMENT OF HEALTH AND HUMAN SERVICES 20 Centers for Disease Control and Prevention 21 National Institute for Occupational Safety and Health 22 This information is distributed solely for the purpose of pre dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy. EXTERNAL REVIEW DRAFT 1 Foreword 2 [To be finalized.] 2 This information is distributed solely for the purpose of pre dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy. EXTERNAL REVIEW DRAFT 1 Executive Summary 2 The National Institute for Occupational Safety and Health (NIOSH) has evaluated the scientific 3 data on heat stress and hot environments, and updated the Criteria for a Recommended Standard: 4 Occupational Exposure to Hot Environments [NIOSH 1986a]. This document was last updated 5 in 1986, and in recent years, including during the Deepwater Horizon oil spill response of 2010, 6 questions were raised regarding the need for revision to reflect recent research and findings. This 7 revision includes additional information relating to the physiological changes that result from 8 heat stress; updated information from relevant studies, such as those on caffeine usage; evidence 9 to redefine heat stroke and associated symptoms; and updated information on physical 10 monitoring and personal protective equipment and clothing that can be used to control heat 11 stress.
    [Show full text]
  • Regional Emphasis Program for Heat Illnesses REGIONAL IDENTIFIER: Region VI
    U.S. DEPARTMENT OF LABOR Occupational Safety and Health Administration DIRECTIVE NUMBER:CPL 2 02-00-027A EFFECTIVE DATE: October 1, 2019 SUBJECT: Regional Emphasis Program for Heat Illnesses REGIONAL IDENTIFIER: Region VI ABSTRACT Purpose: This Instruction renews a Regional Emphasis Program (REP) for outdoor heat-related health hazards. Scope: This Instruction applies to all worksites in Arkansas, Louisiana, Oklahoma, and Texas, and those worksites in New Mexico that are under Federal OSHA jurisdiction. References: OSHA Instruction CPL 02-00-025 OSHA Instruction CPL 02-00-051 OSHA Instruction CPL 02-00-163 OSHA Instruction CPL 04-00-002 OSHA Instruction TED 01-00-015 Cancellations: Region VI Regional Notice CPL 2 02-00-027 dated October 1, 2018, Regional Emphasis Program for Heat Illnesses. State Impact: Region VI 21(d) Consultation Project Offices in Arkansas, Louisiana, Oklahoma, New Mexico and Texas will provide outreach, consultation services, and training to affected employers as requested. Action Office s : Region VI Area Offices Region VI Consultation Project Offices Dallas Regional Office Information Office : New Mexico Occupational Health and Safety Bureau Originating Office: Dallas Regional Office Contact: Assistant Regional Administrator for Enforcement Programs 525 S. Griffin Street, Room 602 Dallas, Texas 75202-5007 (972) 850-4145 By and Under the Authority of ERIC S. HARBIN Acting Regional Administrator TABLE OF CONTENTS Abstract………………………………………….…………..Cover Page I. Purpose……………………………………………..…………...…..1 II. Scope………………………………………………..………............1 III. References………………………………………….…..……..…….1 IV. Expiration……………………….……………....…………..………1 V. Background…………………….……………….………..…………1 VI. Objectives……………………….……………………..……………3 VII. Action………………………….……………………………………3 VIII. Inspection Process…………….………….………….……….……..4 IX. Recording in OIS …………….……………..………………...….....5 X. Outreach…………………….…………….….……………………..6 XI. Partnerships and Alliances………………….…….…….………......7 XII.
    [Show full text]
  • To View the Entire USF Health Research Day Abstract Booklet, Go To
    To view the entire USF Health Research Day Abstract Booklet, go to http://health.usf.edu/research/home.html Proud Sponsors of the 23rd Annual RESEARCH DAY Morsani College of Medicine College of Nursing College of Public Health School of Pharmacy MCOM Department of Internal Medicine A Special Thank You to Our Patron Sponsors: 23rd Annual Research Day Friday, February 22, 2013 Marshall Student Center (MSC) AGENDA TIME EVENT LOCATION Presenters: Registration and Poster Set-up 7:30 a.m. – 9:30 a.m. Atrium/Ballroom (Early registration: Feb 21st 4:00 – 6:00 p.m.) 7:30 a.m. – 9:30 a.m. Judges: Registration and Assignments Atrium 4th Annual Joseph Krzanowski, PhD 8:00 a.m. – 10:00 a.m. Oval Theater USF Health Invited Oral Presentations 10:00 a.m. – 12:00 p.m. Poster Judging Session Ballroom 12:00 p.m. – 1:00 p.m. Lunch Break Ballroom Atrium Office of Undergraduate Research 12:45 p.m. – 1:30 p.m. Ballroom Stage Presentation to The Villages students 17th Annual Roy H. Behnke Distinguished Lectureship Dr. Howard L. McLeod 1:00 p.m. – 2:30 p.m. Oval Theater Fred Eshelman Distinguished Professor University of North Carolina – Chapel Hill “Using the Genome to Guide Therapy” Posters Available for Viewing Ballroom 1:00 p.m. – 3:30 p.m. Sunshine ERC Posters Plaza Room 2708 2:30 p.m. – 3:15 p.m. Awards Ceremony Oval Theater 3:30 p.m. – 4:00 p.m. Posters Removed Ballroom 4:00 p.m. – 5:00 p.m. Reception Ballroom Atrium 23rd Annual RESEARCH DAY 17h Annual Roy H.
    [Show full text]
  • Occupational Heat Stress Contribution to WHO Project on “Global Assessment of the Health Impacts of Climate Change”, Which Started in 2009
    ClimateCHIP = Climate Change Health Impact & Prevention: http://www.climatechip.org/ 20 December 2014 Technical Report 2014: 4 Occupational Heat Stress Contribution to WHO project on “Global assessment of the health impacts of climate change”, which started in 2009. Tord Kjellstrom, Bruno Lemke, Matthias Otto, Olivia Hyatt, Keith Dear Project carried out via Health and Environment International Trust, Mapua, New Zealand; email: [email protected] December 2014 1 Summary Increasing heat exposure during the hottest seasons of each year is the most obvious outcome of global climate change, and the issue that greenhouse gas modeling can assess in the most predictable manner. Occupational heat stress is an important direct health hazard related to climate conditions and climate change. The physiological limits of a “livable thermal environment” are well defined, but naturally, the sensitivity to heat exposure has a substantial individual variation. Modern methods of analysis make possible quantitative estimations of the impacts of current climate and future climate change: mortality, non-fatal heat stroke, heat syncope and heat exhaustion, the latter linked to work capacity loss, which is often overlooked in climate change health impact analysis. For these direct health impacts of climate change, it is the local climate where people live and work that matters. Using a field change method for three climate model data provided by WHO, estimates of the heat stress index WBGT for 60,000 grid cells around the world were produced. These estimates included monthly values for the hottest four hours and other hours of each day. Using 30-year average estimates for baseline (1960-1989), 2030 and 2050 we calculated the occupational health impacts for fatal and non-fatal heat stroke, as well as work capacity loss.
    [Show full text]
  • Introduction to Occupational Heat Stress
    3M Occupational Health & Environmental Safety Division Introduction to Occupational Heat Stress Robust Construction From the Market Leader © 2009 3M Company. All Rights Reserved. 3M Occupational Health & Environmental Safety Division Introduction: Occupational Heat Stress 2 3M Occupational Health & Environmental Safety Division Occupational Heat Stress Learning Objectives Reduce risk of heat disorders and stroke. Reduce accidents and injuries. Reduce risk of human error. Maintain performance. Reduce cost of absenteeism. 3 3M Occupational Health & Environmental Safety Division Course Outline Heat Stress Defined Contributors to Heat Stress The Body’s Response Monitoring for Heat Stress Heat Stress Controls The Management of Heat Stress 4 3M Occupational Health & Environmental Safety Division Where the Heat Comes From Metabolic Heat from Converting Food to Energy and Using It to Do Work Heat may be Added by the Environment Heat may Be Taken Away by the Environment Clothing Can Trap the Heat 5 3M Occupational Health & Environmental Safety Division Loss of Thermoregulation Balance 6 3M Occupational Health & Environmental Safety Division Heat Stress: Definition Net Heat Load on the Body from the Combined Contributions of Metabolic Heat Production and External Environmental Factors. 7 3M Occupational Health & Environmental Safety Division Heat Strain: Definition The Net Physiological Load Resulting from Heat Stress (the body’s response) 8 3M Occupational Health & Environmental Safety Division Environmental Factors Temperature
    [Show full text]
  • An Assessment of Occupational Heat Stress in a Central Utility Plant
    University of Nebraska Medical Center DigitalCommons@UNMC Capstone Experience Master of Public Health 5-2020 An Assessment of Occupational Heat Stress in a Central Utility Plant Abdoulaye Abdoulaziz University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/coph_slce Part of the Public Health Commons Recommended Citation Abdoulaziz, Abdoulaye, "An Assessment of Occupational Heat Stress in a Central Utility Plant" (2020). Capstone Experience. 112. https://digitalcommons.unmc.edu/coph_slce/112 This Capstone Experience is brought to you for free and open access by the Master of Public Health at DigitalCommons@UNMC. It has been accepted for inclusion in Capstone Experience by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. University of Nebraska Medical Center (UNMC) MPH Capstone Project: AN ASSESSMENT OF OCCUPATIONAL HEAT STRESS IN A CENTRAL UTILITY PLANT COLLEGE OF PUBLIC HEALTH UNIVERSITY OF NEBRASKA MEDICAL CENTER Abstract Global climate change has been declared a threat to human health, which includes occupational safety issues. As temperatures continue to increase, heat stress and heat-related illness are occupational safety issues that need to be better understood. Assessments of workplace heat exposures are key to implement appropriate health and safety interventions. This study attempted to assess whether workers’ perception of work environment temperature in a Central Utility Plant was associated with heat-stress prevention behaviors. Therefore, we used a questionnaire to collect Central Utility Plant employees’ demographic characteristics, data regarding their perceived work environment temperatures, and their behaviors related to preventing heat-related illness in the workplace. Fifteen questionnaires were received from the workers at two Central Utility Plants.
    [Show full text]