Ext4 File System Performance Analysis in Linux Environment

Total Page:16

File Type:pdf, Size:1020Kb

Ext4 File System Performance Analysis in Linux Environment Recent Advances in Applied & Biomedical Informatics and Computational Engineering in Systems Applications Ext4 file system Performance Analysis in Linux Environment BORISLAV DJORDJEVIC, VALENTINA TIMCENKO Mihailo Pupin Institute University of Belgrade Volgina 15, Belgrade SERBIA [email protected] , [email protected] Abstract: - This paper considers the characteristics and behavior of the modern 64-bit ext4 file system under the Linux operating system, kernel version 2.6. It also provides the performance comparison of ext4 file system with earlier ext3 and ext2 file systems. The testing procedures and further analysis are performed using the Postmark benchmark application. Key-Words: - Linux, FileSystems, ext4/ext3/ext2, journaling, inodes, file block allocation, disk performances 1 Introduction large number of file operations (creation, reading, Ext4 file system is the ext3 file system successor. It writing, appending and file deletion). It comprises is supported on today’s most popular Linux large number of files and data transactions. distributions (RedHat, Ubuntu, Fedora). In contrast Workload can be generated synthetically, as a result to the 32-bit ext3 file system [1] [2], that has only of applying benchmark software, or as a result of working with some real data applications. some features added to its predecessor ext2 and Workload characterization is a hard research maintains a data structure as in the ext2 file system, problem, as arbitrarily complex patterns can the ext4 file system has integrated more substantial frequently occur. In particular, some authors chose changes compared to ext3. Ext4 has improved data to emphasize support for spatial locality in the form structure and enhanced features, which brought of runs of requests to contiguous data, and temporal more reliability and efficiency. It is a 64-bit, locality on the form of bursty arrival patterns. allowing the file size of up to 16 TB [3], [4], [5], Some authors [7] model three different arrival [6]. Great efforts that have been put into the process processes: of ext4 development resulted in new features and • Constant: the interarrival time between requests techniques: extents, journaling check summing, is fixed simultaneous allocation of multiple units, delayed • Poisson: the interarrival time between requests allocation, faster fsck (file system check), and online is independent and exponentially distributed defragmentation of small and large size directories. • Bursty: some of the requests arrive sufficiently This way formed folders can have up to 64,000 close to each other so that their interarrival time files. is less than the service time. 2 Problem Formulation The main objective of this study was to examine the 2.2 Access time for ext4 and ext3 file systems performance of modern file system, ext4, and to In this subchapter we will present the access time compare its characteristics and performances with value comparison for 64-bit ext4 and its 32-bit its predecessor, ext3 and ext2 file systems. Ext4 file predecessors, ext3 and ext2. Expected access time system includes many improvements, especially for file system, for specified workload, comprises when comparing to ext3 file system, but being the following components: 64-bit file system, ext4 is much cumbersome. This characteristic opens the possibility to obtain some = directoryEaccessFSE op]_[]_[ + unexpected results after performing the test metadataE op]_[ + (1) procedures. + accessfiledirectEmngmlistfreeE ]__[]__[ 2.1 Workload specification Where FS_access represents total time that File-based workloads are designed for testing workload needs to carry out all operations, procedures of file systems, and usually consist of directory_op represent total time for all operations ISBN: 978-1-61804-028-2 288 Recent Advances in Applied & Biomedical Informatics and Computational Engineering in Systems Applications related to working with directories (search, new mechanism. These components are: (1) the seek object creation and delete of existing objects), time (SeekTime), which is the amount of time metadata_op represents total time needed for needed to move the disk heads to the desired performing metadata operations (metadata search cylinder; (2) the rotational latency operations, metadata cache forming, and metadata (RotationalLatency), which is the time that the objects modifications), free_list_mngm presents platter needs to rotate to the desired sector; and (3) total time needed for performing operations with the transfer time (TT) same as Tmedia time, which free blocks and inode lists (file expansion/shrinking, is the time needed to transfer the data from the disk creation of new objects or deletion of existing mechanism to the next higher level. Since these are objects), and direct_file_access is the time required typically independent variables, we can approximate for direct file blocks operations (read/write). the expected value of the disk mechanism service Directory operations, metadata operations and time as: direct file accesses are cache based accesses and their performances directly depend on cache. Under E[__][] Mech Service Time= E SeekTime + these conditions, the expected effective access time E[RotationalLatency]+ E [ TT [ request _size ]] would be: (5) E Cache Service Time [__] ≈ The transfer time (TT) is a function of two E[_] request size parameters, the Transfer_rate, which is the transfer Hit_* prob + (2) Cache __Transfer Rate rate of data off/onto the disk and E[request_size]. Function can be approximated as: Miss_[__] prob⋅ E Mech Service Time TT[_] request size = Mech_Service_Time is the total time needed to (6) perform disk data transfer. E[_]/[_] request size E Tranfer rate In the case of cache-miss, performances are strictly Variations will occur as a result of track and dependent on disc characteristics and consist of cylinder switches and different track sizes in number of time based components: different zones on the disk. Mech __Service time = Taccess _ time The SeekTime can be approximated as the (3) following function of dis, which is the number of + Tmedia _ time + TInterface _ time cylinders to be travelled: Where Taccess_time is total time needed for ⎧0 dis = 0 ⎫ mechanical components of disk transfer, ⎪ ⎪ (7) Tmedia_time is total time needed for write/read SeekTime[]dis = ⎨a+ b dis 0 p dis≤ e⎬ ⎪ ⎪ operstions from disc medium, and Tinterface_time ⎩c+ d ⋅ dis disf e ⎭ is total time needed for read/write operations from disc cache buffer. where a, b, c, d, and e are disk -specific parameters. Taccess _ time = CommandOverhead If we assume that the requests are randomly + SeekTime + (4) distributed on the sectors of the given cylinder using a uniform distribution, than: SettleTime + RotationalLatency E[Rotational _]latency = revolution _time / 2 (8) Where CommandOverhead time is time required for disc commands decoding, SeekTime is time 2.4.1 Expected behaviour of ext4/ext3 file systems needed for disc servo system positioning, Starting from formula (1) which is appropriate for SettleTime is time required for disc head non-journaling file systems, for the case of stabilization, and RotationalLatency is time wasted journaling based file systems, as ext4 and ext3 are, on disc rotation latency. one additional member has to be added, E[ journaling _]time , which can increase There are three dominant components, whose sum can be presented as Mech Service Time, which reliability but can also have negative impact to the is the service time for a request related to the disk global performances: ISBN: 978-1-61804-028-2 289 Recent Advances in Applied & Biomedical Informatics and Computational Engineering in Systems Applications = directoryEaccessFSE + metadataEop op]_[]_[]_[ (9) 3.1 Postmark Test1 (small files) + mngmlistfreeE ]__[ + Files used for the purpose of performing this testing filedirectE accesses + E[]__[ journaling time]_ procedure are relatively small, ranging from 1K to 100K. Appropriate Postmark configuration used for journaling_time is total time needed for this test was: file size range from 1000 to 100000, performance of journaling operations (metadata number of generated files was 4000, and number of writes to the log, and metadata log discharge). performed transactions was 50000. Performance At first glance we could assume that perhaps results for each file operation (creation, journaling techniques will decrease file system creation/alone, creation/with transactions, reading, performances, but the fact is that this statement can appending, deleting, deleting/alone, deleting/with not be taken for sure. Instead of math simulated transactions) are given on the Figures 3.1a and 3.1b. workload, we have applied synthetically generated Operations delete/alone and create/alone are workload in Postmark benchmark environment. performed in special benchmark phases, and do not suppose transactions. Though, they do have high 3 Problem Solution values. For purposes of testing the chosen file systems we have used the Postmark Benchmark [8] software. It File Operation - results simulates the Internet Mail server load. Postmark del/with tr creates large initial set (pool) of randomly generated deleting ext4 files, and saves them in any location in the file appending ext3 system. Over this set of files Postmark and the read ext2 operating system perform operations of creation, creat/with tr reading, registration and deletion of files and creation determine the time required to perform these files/s operations. The operations are performed
Recommended publications
  • Relieving the Burden of Track Switch in Modern Hard Disk Drives
    Multimedia Systems DOI 10.1007/s00530-010-0218-5 REGULAR PAPER Relieving the burden of track switch in modern hard disk drives Jongmin Gim • Youjip Won Received: 11 November 2009 / Accepted: 22 November 2010 Ó Springer-Verlag 2010 Abstract In this work, we propose a novel hard disk 128 KByte, 17% of the disk space becomes unusable. technique, ‘‘AV Disk’’, for modern multimedia applica- Despite the decreased storage area, track aligning tech- tions. Modern hard disk drives adopt complex sector layout nique increases the overall performance of the hard disk. mechanisms to reduce track and head switch overhead. According to our simulation-based experiment, overall disk While these complex sector layout mechanism can reduce performance increases about 5–25%. Given that capacity of average overhead involved in the track and head switch, hard disk increases 100% every year, we cautiously regard they bring larger variability in the overhead. From a it as reasonable tradeoff to increase the I/O latency of the multimedia application’s point of view, it is important to disk. minimize the worst case I/O latency rather than to improve the average IO latency. We focus our effort to minimize Keyword Hard disk drive Á Multimedia Á Track align Á track switch overhead as well as the variability in track Track switch Á Sector geometry Á Audio and video switch overhead involved in disk I/O. We propose that track of the hard disk drive is aligned with a certain IO size. In this work, we develop an elaborate performance model 1 Introduction with which we can compute the optimal IO unit size for multimedia applications.
    [Show full text]
  • Ext4 File System and Crash Consistency
    1 Ext4 file system and crash consistency Changwoo Min 2 Summary of last lectures • Tools: building, exploring, and debugging Linux kernel • Core kernel infrastructure • Process management & scheduling • Interrupt & interrupt handler • Kernel synchronization • Memory management • Virtual file system • Page cache and page fault 3 Today: ext4 file system and crash consistency • File system in Linux kernel • Design considerations of a file system • History of file system • On-disk structure of Ext4 • File operations • Crash consistency 4 File system in Linux kernel User space application (ex: cp) User-space Syscalls: open, read, write, etc. Kernel-space VFS: Virtual File System Filesystems ext4 FAT32 JFFS2 Block layer Hardware Embedded Hard disk USB drive flash 5 What is a file system fundamentally? int main(int argc, char *argv[]) { int fd; char buffer[4096]; struct stat_buf; DIR *dir; struct dirent *entry; /* 1. Path name -> inode mapping */ fd = open("/home/lkp/hello.c" , O_RDONLY); /* 2. File offset -> disk block address mapping */ pread(fd, buffer, sizeof(buffer), 0); /* 3. File meta data operation */ fstat(fd, &stat_buf); printf("file size = %d\n", stat_buf.st_size); /* 4. Directory operation */ dir = opendir("/home"); entry = readdir(dir); printf("dir = %s\n", entry->d_name); return 0; } 6 Why do we care EXT4 file system? • Most widely-deployed file system • Default file system of major Linux distributions • File system used in Google data center • Default file system of Android kernel • Follows the traditional file system design 7 History of file system design 8 UFS (Unix File System) • The original UNIX file system • Design by Dennis Ritche and Ken Thompson (1974) • The first Linux file system (ext) and Minix FS has a similar layout 9 UFS (Unix File System) • Performance problem of UFS (and the first Linux file system) • Especially, long seek time between an inode and data block 10 FFS (Fast File System) • The file system of BSD UNIX • Designed by Marshall Kirk McKusick, et al.
    [Show full text]
  • OEM HARD DISK DRIVE SPECIFICATIONS for DPRS
    IBML S39H-4500-02 OEM HARD DISK DRIVE SPECIFICATIONS for DPRS-20810/21215 (810/1215 MB) 2.5-Inch Hard Disk Drive with SCSI Interface Revision (1.2) IBML S39H-4500-02 OEM HARD DISK DRIVE SPECIFICATIONS for DPRS-20810/21215 (810/1215 MB) 2.5-Inch Hard Disk Drive with SCSI Interface Revision (1.2) 1st Edition (ver.1.0) S39H-4500-00 (June 16, 1995) 2nd Edition (ver.1.1) S39H-4500-01 (October 24, 1995) 3rd Edition (ver.1.2) S39H-4500-02 (November 1, 1995) The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer or express or implied warranties in certain transactions, therefore, this statement may not apply to You. This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improve- ments and/or changes in the product(s) and/or the program(s) described in this publication at any time. It is possible that this publication may contain reference to, or information about, IBM products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that IBM intends to announce such IBM products, programming, or services in your country.
    [Show full text]
  • Learning Proxmox VE Learning Proxmox VE
    Learning Proxmox VE Learning Proxmox VE Proxmox VE 4.1 provides an open source, enterprise virtualization platform on which to host virtual servers as What you will learn from this book either virtual machines or containers. Install and confi gure Proxmox VE 4.1 This book will support your practice of the requisite skills to successfully create, tailor, and deploy virtual machines Download container templates and virtual and containers with Proxmox VE 4.1. appliances Following a survey of PVE's features and characteristics, Create and host containers based on this book will contrast containers with virtual machines and templates establish cases for both. It walks through the installation Create and host virtual machines of Proxmox VE, explores the creation of containers and virtual machines, and suggests best practices for virtual Optimize virtual machine performance disk creation, network confi guration, and Proxmox VE for common use cases host and guest security. Apply the latest security patches to Throughout the book, you will navigate the Proxmox VE a Proxmox VE host Community Experience Distilled 4.1 web interface and explore options for command-line management. Contrast PVE virtual machines and containers in order to recognize their respective use cases Who this book is written for Secure Proxmox VE hosts as well as virtual This book is intended for server and system administrators machines and containers and engineers who are eager to take advantage of the Learning Proxmox VE potential of virtual machines and containers to manage Assess the benefi ts of virtualization with servers more effi ciently and make the best use of regard to budgets, server real estate, Rik Goldman resources, from energy consumption to hardware maintenance, and management time utilization and physical real estate.
    [Show full text]
  • OEM HARD DISK DRIVE SPECIFICATIONS for DORS-31080 / DORS-32160 SCSI-3 FAST-20 68-Pin Single-Ended Models 3.5-Inch Hard Disk Driv
    IBML S39H-2859-03 OEM HARD DISK DRIVE SPECIFICATIONS for DORS-31080 / DORS-32160 SCSI-3 FAST-20 68-pin Single-ended Models 3.5-Inch Hard Disk Drive ( 1080 / 2160 MB ) Revision (3.0) IBML S39H-2859-03 OEM HARD DISK DRIVE SPECIFICATIONS for DORS-31080 / DORS-32160 SCSI-3 FAST-20 68-pin Single-ended Models 3.5-Inch Hard Disk Drive ( 1080 / 2160 MB ) Revision (3.0) 1st Edition (Rev.1.0) S39H-2859-00 (Dec. 15, 1995) 2nd Edition (Rev.1.1) S39H-2859-01 (Jan. 22, 1996) 3rd Edition (Rev.2.0) S39H-2859-02 (Mar. 15, 1996) 4th Edition (Rev.3.0) S39H-2859-03 (Jun. 13, 1996) The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer or express or implied warranties in certain transactions, therefore, this statement may not apply to You. This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improve- ments and/or changes in the product(s) and/or the program(s) described in this publication at any time. It is possible that this publication may contain reference to, or information about, IBM products (machines and programs), programming, or services that are not announced in your country.
    [Show full text]
  • A Ffsck: the Fast File System Checker
    A ffsck: The Fast File System Checker AO MA, University of Wisconsin, Madison; Backup Recovery Systems Division, EMC Corporation CHRIS DRAGGA, ANDREA C. ARPACI-DUSSEAU, and REMZI H. ARPACI-DUSSEAU, University of Wisconsin, Madison MARSHALL KIRK McKUSICK, McKusick.com Crash failures, hardware errors, and file system bugs can corrupt file systems and cause data loss, despite the presence of journals and similar preventive techniques. While consistency checkers such as fsck can detect this corruption and restore a damaged image to a usable state, they are generally created as an afterthought, to be run only at rare intervals. Thus, checkers operate slowly, causing significant downtime for large scale storage systems when they are needed. We address this dilemma by treating the checker as a key component of the overall file system (and not merely a peripheral add-on). To this end, we present a modified ext3 file system, rext3, to directly support the fast file system checker, ffsck. The rext3 file system colocates and self-identifies its metadata blocks, removing the need for costly seeks and tree traversals during checking. These modifications to the file system allow ffsck to scan and repair the file system at rates approaching the full sequential bandwidth of the underlying device. In addition, we demonstrate that rext3 performs competitively with ext3 in most cases and exceeds it in handling random reads and large writes. Finally, we apply our principles to FFS, the default FreeBSD file system, and its checker, doing so in a lightweight fashion that preserves the file-system layout while still providing some of the gains in performance from ffsck.
    [Show full text]
  • File Systems
    File Systems Chapter 11, 13 OSPP What is a File? What is a Directory? Goals of File System • Performance • Controlled Sharing • Convenience: naming • Reliability File System Workload • File sizes – Are most files small or large? – Which accounts for more total storage: small or large files? File System Workload • File access – Are most accesses to small or large files? – Which accounts for more total I/O bytes: small or large files? File System Workload • How are files used? – Most files are read/written sequentially – Some files are read/written randomly • Ex: database files, swap files – Some files have a pre-defined size at creation – Some files start small and grow over time • Ex: program stdout, system logs File System Abstraction • Path – String that uniquely identifies file or directory – Ex: /cse/www/education/courses/cse451/12au • Links – Hard link: link from name to metadata location – Soft link: link from name to alternate name • Mount – Mapping from name in one file system to root of another UNIX File System API • create, link, unlink, createdir, rmdir – Create file, link to file, remove link – Create directory, remove directory • open, close, read, write, seek – Open/close a file for reading/writing – Seek resets current position • fsync – File modifications can be cached – fsync forces modifications to disk (like a memory barrier) File System Interface • UNIX file open is a Swiss Army knife: – Open the file, return file descriptor – Options: • if file doesn’t exist, return an error • If file doesn’t exist, create file and open it • If file does exist, return an error • If file does exist, open file • If file exists but isn’t empty, nix it then open • If file exists but isn’t empty, return an error • … Implementation • Disk buffer cache • File layout • Directory layout Cache • File consistency vs.
    [Show full text]
  • From Flash to 3D Xpoint: Performance Bottlenecks and Potentials in Rocksdb with Storage Evolution
    From Flash to 3D XPoint: Performance Bottlenecks and Potentials in RocksDB with Storage Evolution Yichen Jia Feng Chen Computer Science and Engineering Computer Science and Engineering Louisiana State University Louisiana State University [email protected] [email protected] Abstract—Storage technologies have undergone continuous much lower latency and higher throughput. Most importantly, innovations in the past decade. The latest technical advance- 3D XPoint SSD significantly alleviates many long-existing ment in this domain is 3D XPoint memory. As a type of Non- concerns on flash SSDs, such as the read-write speed disparity, volatile Memory (NVM), 3D XPoint memory promises great improvement in performance, density, and endurance over NAND slow random write, and endurance problems [26], [42]. Thus flash memory. Compared to flash based SSDs, 3D XPoint based 3D XPoint SSD is widely regarded as a pivotal technology for SSDs, such as Intel’s Optane SSD, can deliver unprecedented low building the next-generation storage system in the future. latency and high throughput. These properties are particularly On the software side, in order to accelerate I/O-intensive appealing to I/O intensive applications. Key-value store is such services in data centers, RocksDB [11], which is the state- an important application in data center systems. This paper presents the first, in-depth performance study of-art Log-structured Merge tree (LSM-tree) based key-value on the impact of the aforesaid storage hardware evolution store, has been widely used in various major data storage to RocksDB, a highly popular key-value store based on Log- and processing systems, such as graph databases [8], stream structured Merge tree (LSM-tree).
    [Show full text]
  • D-Link Iscsi IP SAN Storage 10Gbe Iscsi to SATA II / SAS RAID IP SAN Storage
    D-Link iSCSI IP SAN storage 10GbE iSCSI to SATA II / SAS RAID IP SAN storage DSN-6410 & DSN-6410 with DSN-640 User Manual Version 1.0 1 Preface Copyright Copyright@2012, D-Link Corporation. All rights reserved. No part of this manual may be reproduced or transmitted without written permission from D-Link Corporation. Trademarks All products and trade names used in this manual are trademarks or registered trademarks of their respective companies. About this manual This manual is the introduction of D-Link DSN-64x0 IP SAN storage and it aims to help users know the operations of the disk array system easily. Information contained in this manual has been reviewed for accuracy, but not for product warranty because of the various environments / OS / settings. Information and specification herein are subject to change without notice. For any update information, please visit www.dlink.com. Model comparison DSN-6400 series adopted the 2U12 form factor for all models. DSN-64x0 IP SAN storages stand for the following models. DSN-6410 with DSN-640: Dual controllers. - This manual will use “DSN-6410w/DSN-640” for this configuration DSN-6410: Single controller, can be upgradable to dual mode. The dual controller specific functions such as dual-active, cache mirroring, flexible RG ownership management, management port seamless take-over, no system down time, and etc are not available in DSN-6410. Caution Do not attempt to service, change, disassemble or upgrade the equipment’s components by yourself. Doing so may violate your warranty and expose you to electric shock. Refer all servicing to authorized service personnel.
    [Show full text]
  • Cache and Demand Paging Professor Qiang Zeng Spring 2018 Process Switch
    CIS 3207 - Operating Systems Memory Management – Cache and Demand Paging Professor Qiang Zeng Spring 2018 Process switch • Upon process switch what is updated in order to assist address translation? – Contiguous allocation: base & limit registers – Segmentation: register pointing to the segment table (recall that each process has its own segment table) – Paging: register pointing to the page table; TLB should be flushed if the TLB does not support multiple processes CIS 3207 - Operating Systems 2 How is fork() implemented in Paging? • Copy-on-write – Copy page table of parent into child process – Mark all writable pages (in both page tables) as read- only – Trap into kernel on write (by child or parent) • Consult ground truth information about the write permission • Allocate a frame and copy the page content, and mark it writable • Resume execution • What is the benefit of CoW? – If a page is never modified, it will not be copied; i.e., pages are copied only when necessary CIS 3207 - Operating Systems 3 Multilevel Page Table CIS 3207 - Operating Systems 4 What is TLB, and how does it work? • Translation Lookaside Buffer (TLB): cache specialized for speeding up address translation – each entry stores a mapping from page # to frame # • Translate the address “page # : offset” – If the page # is in TLB cache, get frame # out – Otherwise get frame # from page table, and load the (page #, frame #) mapping into TLB CIS 3207 - Operating Systems 5 Outline • Locality and Memory hierarchy • CPU cache • Page cache (also called Disk Cache) and swap cache
    [Show full text]
  • Sabre Dmax10 SATA 021606.Book
    DiamondMax 10 80/100/120/160/200/250/300GB Serial ATA February 16, 2006 Part Number: 000001914 ©February 16, 2006, Maxtor Corporation. All rights reserved. Printed in U.S.A. This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein – which will be incorporated in revised editions of the publication. Maxtor may make changes or improvements in the product(s) described in this publication at any time and without notice. UL/CSA/VDE/TUV/RoHS UL standard 1954 recognition granted under File No. E146611 CSA standard C22.2-950 certification granted under File No. LR49896 TUV Rheinland EN 60 950 Tested to FCC Rules for Radiated and Conducted Emissions, Part 15, Sub Part J, for Class-B Equipment. Korean EMC certifications are issued by Radio Research laboratory (RPL), which is organized under the Ministry of Information and Communications (MIC). EMC testing includes electromagnetic emissions (EMI) and susceptibility (EMS). Certified equipment is labeled with the MIC mark and certification num- ber. The DiamondMax 10 product has been tested and found to be in compliance with Korean Radio Research Laboratory (RRL) EMC requirements. The product bears MIC mark/logo with certification number. DiamondMax 10 model number 6LXXXXX meet the EU directive for the Restriction and Use of Hazard- ous Substances (RoHS), 2002/95/EC of the European Parliament and the council of 27 January, 2003. DiamondMax 10 model numbers 6BXXXXX do not meet these initiatives. PATENTS These products are covered by or licensed under one or more of the following U.S. Patents: 4,419,701; 4, 538,193 4,625,109; 4,639,798; 4,647,769; 4,647,997; 4,661,696; 4,669,004; 4,675,652; 4,703,176; 4,730,321; 4,772,974; 4,783,705; 4,819,153; 4,882,671; 4,920,442; 4,920,434; 4,982,296; 5,005,089; 5,027,241; 5,031,061; 5,084,791; 5,119,254; 5,160,865; 5,170,229; 5,177,771; Other U.S.
    [Show full text]
  • Using MEMS-Based Storage Devices in Computer Systems
    Using MEMS-based storage devices in computer systems STEVEN W. SCHLOSSER May 2004 cmu-pdl-04-104 Dept. of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, PA 15213 A dissertation submitted to the graduate school in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering. Thesis committee Gregory R. Ganger, Chair L. Richard Carley James C. Hoe Charles C. Morehouse, Hewlett-Packard Laboratories c 2004 Steven W. Schlosser i Keywords: MEMS-based storage, storage systems performance, database sys- tems, disk arrays To my family: my parents, Phil and Kathy; my sister, Jennifer; and my wife, Rachel. Abstract MEMS-based storage is an interesting new technology that promises to bring fast, non-volatile, mass data storage to computer systems. MEMS-based storage de- vices (MEMStores) themselves consist of several thousand read/write tips, anal- ogous to the read/write heads of a disk drive, which read and write data in a recording medium. This medium is coated on a moving rectangular surface that is positioned by a set of MEMS actuators. Access times are expected to be less than a millisecond with energy consumption 10{100× less than a low-power disk drive, while streaming bandwidth and volumetric density are expected to be around that of disk drives. This dissertation explores the use of MEMStores in computer systems, with a focus on whether systems can use existing abstractions and interfaces to incor- porate MEMStores effectively, or if they will have to change the way they access storage to benefit from MEMStores. If systems can use MEMStores in the same way that they use disk drives, it will be more likely that MEMStores will be adopted when they do become available.
    [Show full text]