Colliding Stars Spark Rush to Solve Cosmic Mysteries Stellar Collision Confirms Theoretical Predictions About the Periodic Table

Total Page:16

File Type:pdf, Size:1020Kb

Colliding Stars Spark Rush to Solve Cosmic Mysteries Stellar Collision Confirms Theoretical Predictions About the Periodic Table Colliding stars spark rush to solve cosmic mysteries Stellar collision confirms theoretical predictions about the periodic table. • Davide Castelvecchi Neutron stars set to open their heavy hearts The collision generated the strongest and longest-lasting gravitational-wave signal ever seen on Earth. And the visible-light signal generated during the collision closely matches predictions made in recent years by theoretical astrophysicists, who hold that many elements of the periodic table that are heavier than iron are formed as a result of such stellar collisions. Neutron-star mergers are also thought to trigger previously mysterious short γ-ray bursts, a hypothesis that now also seems to have been confirmed. Astronomers have good reasons to believe that they are looking at the same source of both the gravitational waves and the short γ-ray bursts, says Cole Miller, an astronomer at the University of Maryland in College Park, who was not involved in the research but who has seen some of the papers ahead of their publication. Bright object The event was detected on Earth on 17 August, and triggered weeks of febrile, round-the-clock activity on all 7 continents, as more than 70 teams of researchers scrambled to observe the aftermath. The collision was felt first as a space-time tremor by the Laser Interferometer Gravitational-wave Observatory (LIGO) in the United States and by its Italy-based counterpart Virgo, and seen seconds afterwards as a smattering of high-energy photons by NASA’s Fermi Gamma-ray Space Telescope. Global networks of small telescopes will chase companion signals of gravitational waves Alerted by the LIGO–Virgo team, astronomers then raced to find and study what was seen as a bright object in the sky using telescopes big and small, famous and obscure, on land and in orbit, and spanning the spectrum of electromagnetic radiation, from radio waves to X-rays. Cody Messick was at his home at 08:41 local time (12:41 UT) on 17 August when he first found out about the event. “I remember standing on my stairs and looking at my phone, thinking: ‘Wow!” he says. Messick, who is a physicist at Pennsylvania State University in University Park, belongs to a small team of LIGO first-responders who receive frequent automated alerts from the two interferometers, which are based in Livingston, Louisiana, and Hanford, Washington. Normally, LIGO’s algorithms flag a potential signal in real time only if both interferometers detect it. Messick was surprised, because the message on his smartphone mentioned a strong signal — but one seen only at the Hanford site. Messick quickly got on a conference call with his team leader, Chad Hanna, also at Pennsylvania State, and other colleagues. Together, they examined the data online. The Hanford signal looked like a textbook example of the waveform of the gravitational waves emitted by two compact objects, each slightly more massive than the Sun, as they spiral into each other, he says. In particular, the waves lasted much longer — about 100 seconds — and had a higher pitch than the signals from the much more massive black-hole mergers that LIGO had previously detected. Related stories • Global networks of small telescopes will chase companion signals of gravitational waves • Gravitational wave detection wins physics Nobel • European detector spots its first gravitational wave More related stories When they looked at the data stream coming from Livingston, the LIGO researchers found a similar signal there as well, but one with a loud, spurious glitch towards the end. It was that anomaly that had caused the real-time-analysis software to ignore the signal, says David Shoemaker, a physicist at the Massachusetts Institute of Technology in Cambridge who is LIGO’s spokesperson. Meanwhile, researchers received another alert: Fermi had detected a short γ-ray burst that had occurred 1.7 seconds after the gravitational waves had ended. Called GRB170817A, it was unusually faint for such a burst. Second signal In Italy, another technical glitch had suspended the continuous stream of data normally sent out by Virgo. So it took another 40 minutes for researchers to realize that they, too, had a signal — albeit a faint one. It transpired that the waves had travelled close to one of the interferometer’s four blind spots, says Jo van den Brand, a physicist at the Vrije Universiteit Amsterdam and spokesperson for the Virgo Collaboration. By 13:21 UT, 40 minutes after the event, the LIGO–Virgo team had decided to notify its roughly 70 follow-up partners — teams of astronomers on standby to look for related events using conventional telescopes. Four and a half hours later, the team sent a second, much more useful alert. The timing of Virgo’s feeble signal had been sufficient for the LIGO-Virgo team to identify the source of the waves. It pointed to a region of the sky spanning an angle of just a few degrees, in the southern sky. They called the event GW170817, after the date it was detected. European detector spots its first gravitational wave Virgo had joined LIGO’s observation campaign only on 1 August, after a five-year shutdown for upgrades. And just three days before the event’s detection, on 14 August, LIGO and Virgo had made their first joint detection. It enabled them to rehearse the more precise identification of the patch of sky of interest. The event on 17 August enabled them to narrow it down even further. And the estimated distance was ten times closer to Earth than in the previous events. They could tell this because of how loud and persistent the waves were: it was the strongest signal LIGO had ever sensed. After the fact, Hanna’s team was able to extract a signal that lasted a full six minutes. Together, the alerts from LIGO–Virgo and Fermi sent astronomers into a frenzied rush. Each team wanted to be first to spot the fireworks produced by a neutron-star merger. It was daytime on most of the world’s land mass, so teams began to formulate strategies for their nocturnal observations. They knew that, at that time of the year, the region to search was not far from the Sun. That left a window of observation of a couple of hours after dusk, before the region of sky would set below the horizon. “We had a complicated, choreographed dance of telescopes that night,” says Iair Arcavi, an astrophysicist at the University of California, Santa Barbara, whose team made non-stop observations using the Las Cumbres Observatory, a worldwide network of robotic telescopes. It began by activating a number of telescopes in Chile. Three messengers The first person to see the event may have been Charles Kilpatrick, an astronomer at the University of California, Santa Cruz. He was part of a team that was scanning the sky with the more modest means of the single one-metre Swope Telescope in Chile. Like his competitors, Kilpatrick was closely watching the exposures one by one as they came out, comparing them with archival images of the same patch of sky. By the ninth exposure, he saw something very conspicuous in a galaxy called NGC 4993. “It looked exactly like a point source in this image that wasn’t in the reference image,” Kilpatrick says. The team named it SSS17a. Imaging and imagining black holes At least two other groups say they spotted the bright dot independently. They and other teams also made sure that there were no other plausible candidates within the search region. GW170817, GRB170817A and SSS17a really seemed to be three different messengers from the same source. LIGO and Virgo lacked a sufficiently detailed signal of the final instants of the collision to be certain that the objects were neutron stars, Shoemaker says. From gravitational-wave data alone, they could have been two unusually small black holes. But the presence of visible light strongly suggested that at least one of the objects in the merger was a neutron star, he and other researchers say. The group at the University of California, Santa Cruz, was also the first to measure the optical spectrum of SSS17a. On the first night, the dot was bright blue, says astronomer Ryan Foley, who led that effort. NASA’s Swift telescope also detected blue, as well as ultraviolet, light. But during the next few nights of observation, those colours faded away, and the object became more red, according to multiple teams. Colliding neutron stars should spread debris — a mix of neutrons, but also some protons — in three ways, says Brian Metzger, a theoretical astrophysicist at Columbia University in New York City. First, they fling matter out from their outer layers during the final orbits. Then some matter gets squeezed out in the actual collision. Finally, as the two stars begin to collapse into a black hole, it forms an accretion disk of matter, some of which flies out instead of falling in. W. Kastaun/T. Kawamura/B. Giacomazzo/R. Ciolfi/A. Endrizzi Expand Over the past decade or so, astrophysicists had come to believe that this was the most plausible mechanism to explain the abundance of the heavier elements of the periodic table1. The theory held that, overall, about 2% of the combined mass of the stars would escape the fate of the rest. Within one second of the collision, this material would have expanded to become a cloud tens of thousands of kilometres across, but still about as dense as the Sun. In this cauldron, protons and neutrons would immediately clump together to form neutron-heavy nuclei, which would then begin to decay radioactively. This radioactivity would keep the cloud glowing hot for several days, even as it reached the size of the Solar System.
Recommended publications
  • Black-Hole Binaries, Gravitational Waves, and Numerical Relativity
    Black-hole binaries, gravitational waves, and numerical relativity Joan Centrella∗ and John G. Baker† Gravitational Astrophysics Laboratory, NASA/GSFC, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA Bernard J. Kelly‡ and James R. van Meter§ CRESST and Gravitational Astrophysics Laboratory, NASA/GSFC, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA and Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA (Dated: November 30, 2010) Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monu- mental astrophysical events, releasing tremendous amounts of energy in the form of gravitational radiation, and are key sources for both ground- and space-based gravitational-wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only be calculated through numerical simulations of Einstein’s equations of general relativity. For many years, nu- merical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit could be simulated. Recently, however, a series of dramatic advances in numerical relativity has allowed stable, robust black-hole merger simulations. This remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging is chronicled. Important applications of these fundamental physics results to astrophysics, to gravitational-wave astronomy, and in other areas are also discussed. Contents G. Numerical Approximation Methods 15 H. Extracting the Physics 15 I. Prelude 2 V. Black-Hole Merger Dynamics and Waveforms 16 II.
    [Show full text]
  • Are Gamma-Ray Bursts Signals of Supermassive Black Hole Formation?
    Are Gamma-Ray Bursts Signals of Supermassive Black Hole Formation? K. Abazajian, G. Fuller, X. Shi Department of Physics, University of California, San Diego, La Jolla, California 92093-0350 Abstract. The formation of supermassive black holes through the gravitational 4 collapse of supermassive objects (M ∼> 5 × 10 M⊙) has been proposed as a source of cosmological γ-ray bursts. The major advantage of this model is that such collapses are far more energetic than stellar-remnant mergers. The major drawback of this idea is the severe baryon loading problem in one-dimensional models. We can show that the observed log N − log P (number vs. peak flux) distribution for gamma-ray bursts in the BATSE database is not inconsistent with an identification of supermassive object collapse as the origin of the gamma-ray bursts. This conclusion is valid for a range of plausible cosmological and γ-ray burst spectral parameters. 1. Introduction We investigate aspects of a recent model for the internal engine powering γ-ray bursts (GRBs). This model produces a GRB fireball through neutrino emission and annihilation during the collapse of a supermassive object into a black hole (Fuller & Shi, 1998). This supermassive object may either be a relativistic cluster of stars or a single supermassive star. The collapse of a supermassive object provides an exceedingly large amount of energy to power the burst, much higher than the amount of energy available in stellar remnant models. In addition, the rate of collapse of these objects–when associated with galaxy-type structures–is arXiv:astro-ph/9812287v1 15 Dec 1998 similar to the GRB rate.
    [Show full text]
  • Gamma Ray Bursts from Stellar Collisions
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server Gamma Ray Bursts from Stellar Collisions Brad M.S. Hansen & Chigurupati Murali Canadian Institute for Theoretical Astrophysics University of Toronto, Toronto, ON M5S 3H8, Canada Received ; accepted –2– ABSTRACT We propose that the cosmological gamma ray bursts arise from the collapse of neutron stars to black holes triggered by collisions or mergers with main sequence stars. This scenario represents a cosmological history qualitatively different from most previous theories because it contains a significant contribution from an old stellar population, namely the globular clusters. Furthermore, the gas poor central regions of globular clusters provide an ideal environment for the generation of the recently confirmed afterglows via the fireball scenario. Collisions resulting from neutron star birth kicks in close binaries may also contribute to the overall rate and should lead to associations between some gamma ray bursts and supernovae of type Ib/c. Subject headings: stars:neutron–supernovae:general–globular clusters:general– gamma rays:bursts– Galaxy:evolution –3– 1. Introduction The detection of X-ray, optical and radio afterglows from gamma-ray burst events (Costa et al 1997; van Paradijs et al 1997, Sahu et al 1997; Frail et al 1997) and concommitant redshifts (Metzger et al 1997) has provided strong support for the cosmological origin of the phenomenon. The success of the fireball model (Cavallo & Rees 1978; Rees & Meszaros 1992; Meszaros & Rees 1993) is largely independent of the origin of the energy, requiring only an energetic and baryon-poor event confined to small scales, thereby giving rise to a relativistic and optically thick outflow.
    [Show full text]
  • The Time of Perihelion Passage and the Longitude of Perihelion of Nemesis
    The Time of Perihelion Passage and the Longitude of Perihelion of Nemesis Glen W. Deen 820 Baxter Drive, Plano, TX 75025 phone (972) 517-6980, e-mail [email protected] Natural Philosophy Alliance Conference Albuquerque, N.M., April 9, 2008 Abstract If Nemesis, a hypothetical solar companion star, periodically passes through the asteroid belt, it should have perturbed the orbits of the planets substantially, especially near times of perihelion passage. Yet almost no such perturbations have been detected. This can be explained if Nemesis is comprised of two stars with complementary orbits such that their perturbing accelerations tend to cancel at the Sun. If these orbits are also inclined by 90° to the ecliptic plane, the planet orbit perturbations could have been minimal even if acceleration cancellation was not perfect. This would be especially true for planets that were all on the opposite side of the Sun from Nemesis during the passage. With this in mind, a search was made for significant planet alignments. On July 5, 2079 Mercury, Earth, Mars+180°, and Jupiter will align with each other at a mean polar longitude of 102.161°±0.206°. Nemesis A, a brown dwarf star, is expected to approach from the south and arrive 180° away at a perihelion longitude of 282.161°±0.206° and at a perihelion distance of 3.971 AU, the 3/2 resonance with Jupiter at that time. On July 13, 2079 Saturn, Uranus, and Neptune+180° will align at a mean polar longitude of 299.155°±0.008°. Nemesis B, a white dwarf star, is expected to approach from the north and arrive at that same longitude and at a perihelion distance of 67.25 AU, outside the Kuiper Belt.
    [Show full text]
  • Gamma Ray Bursts from Stellar Collisions
    Gamma Ray Bursts from Stellar Collisions Brad M.S. Hansen & Chigurupati Murali Canadian Institute for Theoretical Astrophysics University of Toronto, Toronto, ON M5S 3H8, Canada Received ; accepted arXiv:astro-ph/9806256v1 18 Jun 1998 –2– ABSTRACT We propose that the cosmological gamma ray bursts arise from the collapse of neutron stars to black holes triggered by collisions or mergers with main sequence stars. This scenario represents a cosmological history qualitatively different from most previous theories because it contains a significant contribution from an old stellar population, namely the globular clusters. Furthermore, the gas poor central regions of globular clusters provide an ideal environment for the generation of the recently confirmed afterglows via the fireball scenario. Collisions resulting from neutron star birth kicks in close binaries may also contribute to the overall rate and should lead to associations between some gamma ray bursts and supernovae of type Ib/c. Subject headings: stars:neutron–supernovae:general–globular clusters:general– gamma rays:bursts– Galaxy:evolution –3– 1. Introduction The detection of X-ray, optical and radio afterglows from gamma-ray burst events (Costa et al 1997; van Paradijs et al 1997, Sahu et al 1997; Frail et al 1997) and concommitant redshifts (Metzger et al 1997) has provided strong support for the cosmological origin of the phenomenon. The success of the fireball model (Cavallo & Rees 1978; Rees & Meszaros 1992; Meszaros & Rees 1993) is largely independent of the origin of the energy, requiring only an energetic and baryon-poor event confined to small scales, thereby giving rise to a relativistic and optically thick outflow.
    [Show full text]
  • Frederic A. Rasio — Publication List
    Frederic A. Rasio | Publication List December 30, 2010 PUBLICATIONS Publications in refereed journals are marked with a ∗ following the number; invited conference papers are marked with a + ; invited reviews are marked with a # . The twenty most cited papers are highlighted with their title in boldface. The number of citations reported by the NASA Astrophysics Data System is given in square brackets following the title. An online version of this list, including links to electronic copies of all papers in PDF format and full citation information, is available at http://www.astro.northwestern.edu/rasio/. 1. Solving the Collisionless Boltzmann Equation in General Relativity. Rasio, F.A., Shapiro, S.L., & Teukolsky, S.A. 1989, in Dynamics of Dense Stellar Systems, ed. D. Merritt (Cambridge: Cam- bridge Univ. Press), 121{130. 2. ∗ On the Existence of Stable Relativistic Star Clusters with Arbitrarily Large Central Redshifts. Rasio, F.A., Shapiro, S.L., & Teukolsky, S.A. 1989, Astrophysical Journal Letters, 336, L63{L66. 3. ∗ What is Causing the Eclipse in the Millisecond Binary Pulsar? Rasio, F.A., Shapiro, S.L., & Teukolsky, S.A. 1989, Astrophysical Journal, 342, 934{939. 4. ∗ Solving the Vlasov Equation in General Relativity. Rasio, F.A., Shapiro, S.L., & Teukolsky, S.A. 1989, Astrophysical Journal, 344, 146{157. 5. ∗ Encounters between Compact Stars and Red Giants in Dense Stellar Systems. Rasio, F.A., & Shapiro, S.L. 1990, Astrophysical Journal, 354, 201{210. 6. ∗ Eclipse Mechanisms for Binary Pulsars. Rasio, F.A., Shapiro, S.L., & Teukolsky, S.A. 1991, Astronomy & Astrophysics, 241, L25{L28. 7. ∗ Collisions of Giant Stars with Compact Objects: Hydrodynamical Calculations [117].
    [Show full text]
  • Instituto De Astrofísica De Andalucía IAA-CSIC
    Cover Picture. First image of the Shadow of the Supermassive Black Hole in M87 obtained with the Event Horizon Telescope (EHT) Credit: The Astrophysical Journal Letters, 875:L1 (17pp), 2019 April 10 index 1 Foreword 3 Research Activity 24 Gender Actions 26 SCI Publications 27 Awards 31 Education 34 Internationalization 41 Workshops and Meetings 43 Staff 47 Public Outreach 53 Funding 59 Annex – List of Publications Foreword coordinated at the IAA. This project, designed to study the central region of the Milky Way with an This Report comes later than usual because of the unprecedented resolution, unravels the history of Covid-Sars2 pandemia. Let us use these first lines star formation in the galactic center, showing that to remember those who died on the occasion of it has not been continuous. In fact, an intense Covid19 and to all those affected personally. We episode of star formation that occurred about a thank all the people, especially in the health sector, billion years ago was detected, where stars with a who worked hard for the good of our society. combined mass of several tens of millions of suns were formed in less than 100 million years. After having received the Severo Ochoa Excellence award in June 2018, 2019 was the first year to be Many other interesting results were published by fully dedicated to our highly competitive strategic IAA researchers in more that 250 publications in research programme. Already the first week of refereed journals, a number of those reflecting our April 2019 was a very special one for the IAA life.
    [Show full text]
  • Evolution of Stellar Collision Products in Globular Clusters – I
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server Evolution of Stellar Collision Products in Globular Clusters – I. Head-on Collisions. Alison Sills Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT, 06520-8101, USA James C. Lombardi1 Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA Charles D. Bailyn, Pierre Demarque Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT, 06520-8101, USA Frederic A. Rasio Department of Physics, MIT 6-201, Cambridge, MA 02139, USA Stuart L. Shapiro2 Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA Received ; accepted 1also Department of Astronomy, Cornell University 2also Department of Astronomy and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign –2– ABSTRACT We explore the evolution of collisionally merged stars in the blue straggler region of the HR diagram. The starting models for our stellar evolution calculations are the results of the smoothed particle hydrodynamics (SPH) simulations of parabolic collisions between main sequence stars performed by Lombardi, Rasio and Shapiro (1996). Since SPH and stellar evolution codes employ different and often contradictory approximations, it is necessary to treat the evolution of these products carefully. The mixture and disparity of the relevant timescales (hydrodynamic, thermal relaxation and nuclear burning) and of the important physical assumptions between the codes makes the combined analysis of the problem challenging, especially during the initial thermal relaxation of the star. In particular, the treatment of convection is important, and semiconvection must be modeled in some detail.
    [Show full text]
  • Survivor of Stellar Collision Is New Type of Pulsating Star 28 June 2013
    Survivor of stellar collision is new type of pulsating star 28 June 2013 understood. Only a few stars that have recently emerged from a stellar collision are known, so it has been difficult to study the connection between stellar collisions and the various exotic stellar systems they produce. When an eclipsing binary system containing one such star turned up as a by- product of a search for extrasolar planets, Dr Pierre Maxted and his colleagues decided to use the high- speed camera ULTRACAM to study the eclipses of the star in detail. These new high-speed brightness measurements show that the remnant of the stripped red giant is a new type of pulsating star. Many stars, including our own Sun, vary in brightness because of pulsations caused by sound waves bouncing around inside the star. For both the Sun and the new variable star, each pulsation cycle takes about 5 minutes. These pulsations can be used to study the properties of a star below its visible surface. Computer models produced by the discovery team show that the sound waves probe Artist's impression of the eclipsing, pulsating binary star all the way to the centre of the new pulsating star. J0247-25. Credit: Keele University Further observations of this star are now planned to work out how long it will be before the star starts to cool and fade to produce a stellar corpse ("white dwarf'") of abnormally low mass. A team of astronomers from the UK, Germany and Spain have observed the remnant of a stellar Dr Pierre Maxted from Keele University, who led collision and discovered that its brightness varies the study, said "We have been able to find out a lot in a way not seen before on this rare type of star.
    [Show full text]
  • Formation of Supermassive Black Holes in the Early Universe
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-6-2021 11:00 AM Formation of Supermassive Black Holes in the Early Universe Arpan Das, The University of Western Ontario Supervisor: Basu, Shantanu, The University of Western Ontario Co-Supervisor: Buchel, Alex, The University of Western Ontario A thesis submitted in partial fulfillment of the equirr ements for the Doctor of Philosophy degree in Astronomy © Arpan Das 2021 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Cosmology, Relativity, and Gravity Commons, External Galaxies Commons, and the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Das, Arpan, "Formation of Supermassive Black Holes in the Early Universe" (2021). Electronic Thesis and Dissertation Repository. 7712. https://ir.lib.uwo.ca/etd/7712 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The aim of the work presented in this thesis is to understand the formation and growth of the seeds of the supermassive black holes in early universe. Supermassive black holes (SMBH) 8 with masses larger than 10 M have been observed when the Universe was only 800 Myr old. The formation and accretion history of the seeds of these supermassive black holes are a matter of debate. In the first part, considering the
    [Show full text]
  • Survivability of Planetary Systems in Young and Dense Star Clusters the Free-floating Stars in the Cluster
    Astronomy & Astrophysics manuscript no. rogue_planets c ESO 2019 March 12, 2019 Survivability of planetary systems in young and dense star clusters A. van Elteren1, S. Portegies Zwart⋆1, I. Pelupessy2, Maxwell X. Cai1, and S.L.W. McMillan3 1 Leiden Observatory, Leiden University, NL-2300RA Leiden, The Netherlands 2 The Netherlands eScience Center, The Netherlands 3 Drexel University, Department of Physics, Philadelphia, PA 19104, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Aims. We perform a simulation using the Astrophysical Multipurpose Software Environment of the Orion Trapezium star cluster in which the evolution of the stars and the dynamics of planetary systems are taken into account. Methods. The initial conditions from earlier simulations were selected in which the size and mass distributions of the observed circumstellar disks in this cluster are satisfactorily reproduced. Four, five, or size planets per star were introduced in orbit around the 500 solar-like stars with a maximum orbital separation of 400 au. Results. Our study focuses on the production of free-floating planets. A total of 357 become unbound from a total of 2522 planets in the initial conditions of the simulation. Of these, 281 leave the cluster within the crossing timescale of the star cluster; the others remain bound to the cluster as free-floating intra-cluster planets. Five of these free-floating intra-cluster planets are captured at a later time by another star. Conclusions. The two main mechanisms by which planets are lost from their host star, ejection upon a strong encounter with another star or internal planetary scattering, drive the evaporation independent of planet mass of orbital separation at birth.
    [Show full text]
  • SCIENTIFIC OSJECTIVES of DEEP SPACE INVESTIGATIONS : the ORIGIN and EVOLUTION of the SOLLAR SYSTEM * Report P-18
    ASTRO SCIENCES CENTER (CODE) 30 (CATEGORY) , - I Report P-!8 SCIENTIFIC OSJECTIVES OF DEEP SPACE INVESTIGATIONS : THE ORIGIN AND EVOLUTION OF THE SOLLAR SYSTEM * Report P-18 SCIENTIFIC OBJECTIVES OF DEEP SPACE INVESTIGATIONS: THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM J. M. Witting Astro Sciences Center of IIT Research Institute Chicago, Illinois I for Lunar and Planetary Programs Office of Space Science and Applications NASA Headquarters Washington, D. C. I Contract No. NASr-65 (06) APPROVED: I I &--p/L-. 4 C. A. Stone, Director Astro Sciences Center September 1966 Ill RESEARCH INSTITUTE FORMATION OF PLANETS FROM A SOLAR NEBULA I . I 1 2A J \ 28 I t LEFT: PLANETS FORM FROM PLANETESIMALS RIGHT: PLANETS FORM FROM PROTOPLANETS 1 The starting point is a solar nebula shown in 1, with countehclock- I wise rotation. In planetesimal theories (Schmidt, Von Weizsacker, l Fowler, Greenstein and Hoyle, Urey, and Cameron) bodies much smaller than a planet are formed (2A), residue gases are swept up or escape, interplanetesimal perturbations give less-ordered orbits (3A), and planets form by accretion (4). In protoplanet theories (Kuiper) a few condensations occur (2B), and collect much of the interplanetary gas (3B). , light gases are lost by evapora- tion and the protoplanets shrink to planets (4). Understanding the origin and evolution of the solar system is one of the primary goals of the space program and many spacecraft experiments and missions contribute to this goal. However the relationship between the individual experi- ments proposed and this goal is often tenuousn The purpose of this study has been to isolate spacecraft measurements and other future work which are closely tied to an understanding of the origin and evolution of the solar system, Three broad areas of study have been pursued: (1) Present day observations, theories, and experi- ments which are thought to be boundary conditions on the origin and evolution of the solar system, i.e., facts which must be explained by any com- plete theory.
    [Show full text]