Sustainable Energy Options for Austin Energy
Total Page:16
File Type:pdf, Size:1020Kb
Sustainable Energy Options for Austin Energy Summary Report A Policy Research Project of The Lyndon B. Johnson School of Public Affairs September 2009 i Lyndon B. Johnson School of Public Affairs Policy Research Project Report Number 166 Sustainable Energy Options for Austin Energy Volume II Project directed by David Eaton, Ph.D. A report by the Policy Research Project on Electric Utility Systems and Sustainability 2009 The LBJ School of Public Affairs publishes a wide range of public policy issue titles. For order information and book availability call 512-471-4218 or write to: Office of Communications, Lyndon B. Johnson School of Public Affairs, The University of Texas at Austin, Box Y, Austin, TX 78713-8925. Information is also available online at www.utexas.edu/lbj/pubs/. Library of Congress Control No.: 2009928359 ISBN: 978-0-89940-783-8 ©2009 by The University of Texas at Austin All rights reserved. No part of this publication or any corresponding electronic text and/or images may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Printed in the U.S.A. Policy Research Project Participants Students Lauren Alexander, B.A. (Psychology and Radio and Film), The University of Texas at Austin Karen Banks, B.A. (Geography and Sociology), The University of Texas at Austin James Carney, B.A. (International Affairs), Marquette University Camielle Compton, B.A. (Sociology and Environmental Policy), College of William and Mary Katherine Cummins, B.A. (History), Austin College Lauren Dooley, B.A. (Political Science), University of Pennsylvania Paola Garcia Hicks, B.S. (Industrial and Systems Engineering), Technologico de Monterrey Marinoelle Hernandez, B.A. (International Studies), University of North Texas Aziz Hussaini, B.S. (Mechanical Enginnering), Columbia Unversity and M.S. (Engineering), The University of Texas at Austin Jinsol Hwang, B.A. (Economics and International Relations), Handond Global University Marina Isupov, B.A. (International and Area Studies), Washington University in Saint Louis Andrew Johnston, B.A. (Art History), The Ohio State University Christopher Kelley, B.A. (Plan II and Philosophy), The University of Texas at Austin James Kennerly, B.A. (Politics), Oberlin College Ambrose Krumpe, B.A. (Economics and Philosophy), College of William and Mary Mark McCarthy, Jr. (Computer Science), Bradley University Ed McGlynn, B.S. (Geological Engineering), University of Minnesota and M.B.A., University of Lueven, Belgium Brian McNerney, M.A. (English), Michigan State University George Musselman II, B.B.A. (Energy Finance), The University of Texas at Austin i Brent Stephens, B.S. (Civil Engineering), Tennessee Technological University Jacob Steubing, B.A. (Sociology), Loyola University New Orleans Research Associate Christopher A. Smith, B.A. (Government), The University of Texas at Austin Project Directors Roger Duncan, General Manager, Austin Energy David Eaton, Ph.D., LBJ School of Public Affairs, The University of Texas at Austin Cary Ferchill, Solar Austin Jeff Vice, Director Local Government Issues, Austin Energy Chip Wolfe, Solar Austin ii Table of Contents List of Tables .................................................................................................................. v List of Figures ................................................................................................................ ix List of Acronyms and Abbreviations ............................................................................ xiii Foreword ..................................................................................................................... xvii Acknowledgments and Disclaimer................................................................................ xix Executive Summary ..................................................................................................... xxi Chapter 1. Introduction: Designing a Sustainable Electric Utility .................................... 1 Chapter 2. Austin Energy’s Current Power Generation Mix ........................................... 21 Chapter 3. Demand-Side Management........................................................................... 37 Chapter 4. Calculating Austin Energy’s Carbon Footprint ............................................. 63 Chapter 5. Planning for the Future at Austin Energy ...................................................... 81 Chapter 6. Comparing Future Power Generation Options ............................................ 113 Chapter 7. Coal ........................................................................................................... 121 Chapter 8. Natural Gas ................................................................................................ 149 Chapter 9. Nuclear....................................................................................................... 167 Chapter 10. Hydropower and Pumped Storage............................................................. 191 Chapter 11. Wind ........................................................................................................ 201 Chapter 12. Solar ......................................................................................................... 225 Chapter 13. Biomass.................................................................................................... 261 Chapter 14. Geothermal ............................................................................................... 293 Chapter 15. Ocean Energy ........................................................................................... 309 Chapter 16. Hydrogen and Fuel Cells .......................................................................... 325 Chapter 17. Energy Storage ......................................................................................... 333 iii iv List of Tables Table 2.1 Austin Energy Electric Delivery Statistics, 2006 ............................................ 25 Table 3.1 Austin Energy’s Demand-Side Management Programs .................................. 38 Table 3.2 Austin Energy Demand-Side Management Initiatives .................................... 41 Table 3.3 Examples of Energy Efficiency Strategies ...................................................... 43 Table 3.4 United States Residential Energy Consumption.............................................. 45 Table 3.5 Demand Response Program Performance ....................................................... 48 Table 3.6 Elasticity of Substitution for Price-Based Demand Response ......................... 50 Table 3.7 Time-of-Use Pricing Programs....................................................................... 51 Table 3.8 Commercial Real-Time Pricing Programs ...................................................... 52 Table 3.9 Residential Critical-Peak Pricing Programs .................................................... 53 Table 4.1 Steps for an Electric Utility’s Carbon Footprint Reporting ............................. 64 Table 4.2 Austin Energy’s Projected Carbon Dioxide Emissions by Year ...................... 75 Table 5.1 Comparison of Baseload Power Generation Technologies .............................. 87 Table 5.2 Comparison of Intermediate and Peak Power Generation Technologies ......... 88 Table 5.3 Advanced Metering Infrastructure Functions and Benefits ............................. 95 Table 6.1 Power Generation Technologies: Cost and Performance .............................. 114 Table 6.2 Carbon Dioxide Emissions From Power Generation Technologies ............... 115 Table 7.1 Energy and Carbon Content of Coal Types .................................................. 122 Table 7.2 Characteristics of Coal Power Generation Technologies .............................. 123 Table 7.3 Integrated Gasification Combined Cycle Plant Operational Examples .......... 126 Table 7.4 Integrated Gasification Combined Cycle Plant Characteristics ..................... 127 Table 7.5 Coal Power Generation Technology Characteristics ..................................... 132 Table 7.6 Costs of Pulverized Coal Plants.................................................................... 132 v Table 7.7 Fluidized Bed Coal Combustion Plant Characteristics .................................. 133 Table 7.8 Integrated Gasification Combined Cycle Plant Costs .................................... 133 Table 7.9 Coal Costs: Pulverized Coal Versus IGCC Plants ......................................... 134 Table 7.10 Cost and Energy Requirements Associated with Fossil Fuel Technologies . 134 Table 7.11 Electricity Costs with and without Carbon Capture and Sequestration ........ 135 Table 7.12 Costs for Carbon Dioxide Capture and Storage .......................................... 135 Table 7.13 Carbon Capture and Storage Costs by Component ..................................... 136 Table 7.14 Carbon Dioxide Emissions From 500 MW Pulverized Coal Plant With and Without Carbon Capture and Storage .......................................................................... 137 Table 7.15 Cost of Carbon Capture and Storage for Typical Pulverized Coal Plant ...... 137 Table 8.1 Cost and Performance Characteristics of Natural Gas-Fired Power Generation Plants .......................................................................................................................... 152 Table 8.2 Emissions of a Natural Gas Combined