Efficient Privacy-Preserving General Edit Distance and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Privacy-Preserving General Edit Distance and Beyond Efficient Privacy-Preserving General Edit Distance and Beyond Ruiyu Zhu Yan Huang Indiana University Indiana University Email: [email protected] Email: [email protected] Abstract—Edit distance is an important non-linear metric that secure computation protocols such as weighted edit distance, has many applications ranging from matching patient genomes Needleman-Wunsch, longest common subsequence (LCS), and to text-based intrusion detection. Depends on the application, heaviest common subsequence (HCS), using all existing ap- related string-comparison metrics, such as weighted edit distance, Needleman-Wunsch distance, longest common subsequences, and plicable optimizations including fixed-key hardware AES [12], heaviest common subsequences, can usually fit better than the [15], Half-Gate garbling [13], free-XOR technique [11]. We basic edit distance. When these metrics need to be calculated on report the performance of these protocols in the “Best Prior” sensitive input strings supplied by mutually distrustful parties, row of TableI, as well as in the performance charts of Figure4, it is more desirable but also more challenging to compute 5 in Section V-A and use them as baselines to evaluate our them in privacy-preserving ways. In this paper, we propose efficient secure computation protocols for private edit distance as new approach. Note that our baseline performance numbers well as several generalized applications including weighted edit are already much better than any generic protocols we can distance (with potentially content-dependent weights), longest find in the literature, simply because we have, for the first common subsequence, and heaviest common subsequence. Our time, applied the most recent optimizations (such as Half- protocols run 20+ times faster and use an order-of-magnitude Gates, efficient AESNI-based garbling, and highly customized less bandwidth than their best previous counterparts. Along- side, we propose a garbling scheme that allows free arithmetic circuits) to solve this particular set of problems. addition, free multiplication with constants, and low-cost com- To circumvent the deficiency of the generic approach, parison/minimum for inputs of restricted relative-differences. researchers have proposed some interesting heuristic methods Moreover, the encodings (i.e. wire-labels) in our garbling scheme that exploit a public reference string to compute the basic edit can be converted from and to encodings used by traditional binary circuit garbling schemes with light to moderate costs. distance over low-entropy genome strings [16], [17]. Wang et Therefore, while being extremely efficient on certain kinds of al. proposed to approximate edit distances by converting it to computations, the new garbling scheme remains composable and set-difference-size problem then used sketch algorithms to ap- capable of handling generic computational tasks. proximate the set-difference-size [16]. Asharov et al. proposed to divide strings into short segments and approximate the over- I. INTRODUCTION all edit distance by accumulating the scores on the individual Edit Distance quantifies the dissimilarity of two strings by segments [17]. As a result, these methods achieved very high the minimal number of editing operations (insert, delete, and efficiency and scalability. These heuristic methods, however, substitute) to transform one string to the other. It finds many have several notable limitations in common. First, they only interesting applications ranging from diagnosis and treatment work with low-entropy strings. When the entropy of the input of genetic diseases [1–3] to computer immunology [4] and strings increases, it is unclear how to find good reference intrusion detection [5], [6]. The basic edit distance can be strings as those papers did not discuss how to identify good generalized to settings where different costs are associated to reference strings, especially in a privacy-preserving manner. different kinds of editing operations (known as weighted edit Second, they do not support more generalized string metrics distance), and the costs of the edits can even depend on the such as weighted edit distance, Needleman-Wunsch, longest values of the operands (e.g., Needleman-Wunsch [7] distance). common subsequence (LCS), heaviest common subsequence To maximize utility, real world applications often favor vari- (HCS) [18] which are more widely used in the fields than the ants of edit distance with weights empirically adjusted based basic edit distance [2], [6], [8]. Finally, they assume a weaker on the likelihoods of various mutations [2], [6], [8]. threat model that leaks more than what is allowed by the To securely compute the basic edit distance, researchers standard security definition of private edit distance [19]. See have tried generic approaches using binary garbled circuit [9], SectionVI for more detailed discussion on the comparisons. [10]. However, due to the significant constant-factor blowups Thus, our work is motivated by the following two questions: in translating the computation into binary circuits, the cost of • Can private edit distance be done more efficiently over these protocols are prohibitive for practical uses. Moreover, arbitrary inputs according to the standard definition of even leveraging all the recent technical breakthroughs [10–14] security, without sacrificing accuracy? in generic secure computation, performance of the resulting protocols remains less than satisfactory to enable many real • Can the result be extended to compute other more general world applications. As a background-study part of this work, edit-distance-like string metrics used in broader scenarios? we have implemented a class of private-edit-distance-like Our approach to answering these questions is based on two insights. First, most part of these computations can be more Bellare et al. have proposed three security notions for garbling: efficiently realized with arithmetic circuits than binary circuits. privacy, obliviousness, and authenticity, which we summarize Second, we observe that, inherent to these applications, there is as below. special public correlation of intermediate values used by many • Privacy: there exists an efficient simulator S such that for component computations, e.g., the inputs to the minimum every x, circuit differ by some publicly inferable values. To leverage (F; e; d) Gb(1k; f); these insights, we propose a special garbling scheme and (F; X; d): ≈ S(1k; f; f(x) : X En(e; x): demonstrate with experiments that a range of edit-distance- like string-metrics can be securely computed an order-of- where “≈” symbolizes computational indistinguishability. magnitude more efficiently than the best prior work. • Obliviousness: there exists an efficient simulator S such Threat Model. In this paper, we focus on the semi-honest that for every x, model but leave it as an interesting future work to prevent (F; e; d) Gb(1k; f); (F; X): ≈ S(1k; f) : active attacks. X En(e; x): Contribution. We propose a new garbling scheme that ex- ploits interesting characteristics of edit-distance-like computa- • -Authenticity: for every efficient adversary A = (A1; A2), tions. When applied to this particular class of computations, 0 (f; x) A (1k); 1 Y 6= Ev(F; X) 1 the proposed garbling scheme features (almost) free addition, (F; e; d) Gb(1k; f); Pr B and : C ≤ . low cost comparison, minimum, and public table lookup (with B X En(e; x); C @ De(d; Y ) 6= ? A secret indices) operations. Its construction is conceptually Y A (1k; F; X): simple and we formally prove its security. Finally, the scheme 2 can also be extended to handle arbitrary functions through Many optimizations have been proposed to improve circuit tethering with traditional garbling of binary circuits. We garbling in various aspects such as bandwidth [13], [21], have implemented our scheme through exploiting the high- [22], evaluator’s computation [21], memory consumption [10], performance fixed-key AES cipher accelerated by Intel AESNI and using dedicated hardware [12], [13], [23]. State-of-the- instructions. art implementations of garbling schemes using AESNI can We experimentally evaluate our approach by applying the typically produce a garbled row of the garbled truth table in proposed garbling scheme to securely compute edit distance, roughly every 25ns [12], [14], [23]. weighted edit distance, Needleman-Wunsch distance, LCS, HCS. Unlike the approximation approach, our protocols will B. Edit Distance and its Variants and Generalizations always calculate precise results. Our experiments show that these new protocols run 20+ times faster and are an order- The edit distance (also known as Levenshtein distance) of-magnitude more bandwidth-efficient than the state-of-the- between any two strings s and t is the minimum number of art protocols (see TableI for some highlights of the perfor- edits needed to transform s into t, where an edit is typically mance comparisons). Moreover, we stress that, unlike secure one of three basic operations: insert, delete, and substitute. approximation protocols [16], [17], our approach keeps all the Algorithm1 is a standard dynamic programming approach to secret intermediate states of the computation, which can be compute the edit distance between two strings. The invariant obliviously used in a subsequent computation if needed. is that Di;j always represents the edit distance between s[1::i] and t[1::j]. Lines 1–2 initialize the first row of the matrix D II. BACKGROUND while lines 3–4 initialize the first column. Within the main Notations. We denote the computational parameter by κ. We nested loops (lines 5–7), Di;j is set at line 7 to the smallest use “a := b” to denote assigning the value of b to a; use of Di−1;j + cins , Di;j−1 + cdel , and Di−1;j−1 + csub , where “x S” to denote uniformly sampling an element of the set cins ; cdel , and csub correspond to the cost of insert, delete, and S and assigning it to x. substitute a single character (at any position). For basic edit distance, c := 1, c := 1, and c := (s[i] = t[j]) ? 0 : 1, A. Secure Garbling ins del sub i.e., each single-character insert, delete, and substitute incurs First proposed by Yao [20], garbled circuits were later one unit cost while matching characters costs zero.
Recommended publications
  • Dictionary Look-Up Within Small Edit Distance
    Dictionary Lo okUp Within Small Edit Distance Ab dullah N Arslan and Omer Egeciog lu Department of Computer Science University of California Santa Barbara Santa Barbara CA USA farslanomergcsucsbedu Abstract Let W b e a dictionary consisting of n binary strings of length m each represented as a trie The usual dquery asks if there exists a string in W within Hamming distance d of a given binary query string q We present an algorithm to determine if there is a memb er in W within edit distance d of a given query string q of length m The metho d d+1 takes time O dm in the RAM mo del indep endent of n and requires O dm additional space Intro duction Let W b e a dictionary consisting of n binary strings of length m each A dquery asks if there exists a string in W within Hamming distance d of a given binary query string q Algorithms for answering dqueries eciently has b een a topic of interest for some time and have also b een studied as the approximate query and the approximate query retrieval problems in the literature The problem was originally p osed by Minsky and Pap ert in in which they asked if there is a data structure that supp orts fast dqueries The cases of small d and large d for this problem seem to require dierent techniques for their solutions The case when d is small was studied by Yao and Yao Dolev et al and Greene et al have made some progress when d is relatively large There are ecient algorithms only when d prop osed by Bro dal and Venkadesh Yao and Yao and Bro dal and Gasieniec The small d case has applications
    [Show full text]
  • Approximate String Matching with Reduced Alphabet
    Approximate String Matching with Reduced Alphabet Leena Salmela1 and Jorma Tarhio2 1 University of Helsinki, Department of Computer Science [email protected] 2 Aalto University Deptartment of Computer Science and Engineering [email protected] Abstract. We present a method to speed up approximate string match- ing by mapping the factual alphabet to a smaller alphabet. We apply the alphabet reduction scheme to a tuned version of the approximate Boyer– Moore algorithm utilizing the Four-Russians technique. Our experiments show that the alphabet reduction makes the algorithm faster. Especially in the k-mismatch case, the new variation is faster than earlier algorithms for English data with small values of k. 1 Introduction The approximate string matching problem is defined as follows. We have a pat- tern P [1...m]ofm characters drawn from an alphabet Σ of size σ,atextT [1...n] of n characters over the same alphabet, and an integer k. We need to find all such positions i of the text that the distance between the pattern and a sub- string of the text ending at that position is at most k.Inthek-difference problem the distance between two strings is the standard edit distance where substitu- tions, deletions, and insertions are allowed. The k-mismatch problem is a more restricted one using the Hamming distance where only substitutions are allowed. Among the most cited papers on approximate string matching are the classical articles [1,2] by Esko Ukkonen. Besides them he has studied this topic extensively [3,4,5,6,7,8,9,10,11].
    [Show full text]
  • Approximate Boyer-Moore String Matching
    APPROXIMATE BOYER-MOORE STRING MATCHING JORMA TARHIO AND ESKO UKKONEN University of Helsinki, Department of Computer Science Teollisuuskatu 23, SF-00510 Helsinki, Finland Draft Abstract. The Boyer-Moore idea applied in exact string matching is generalized to approximate string matching. Two versions of the problem are considered. The k mismatches problem is to find all approximate occurrences of a pattern string (length m) in a text string (length n) with at most k mis- matches. Our generalized Boyer-Moore algorithm is shown (under a mild 1 independence assumption) to solve the problem in expected time O(kn( + m – k k)) where c is the size of the alphabet. A related algorithm is developed for the c k differences problem where the task is to find all approximate occurrences of a pattern in a text with ≤ k differences (insertions, deletions, changes). Experimental evaluation of the algorithms is reported showing that the new algorithms are often significantly faster than the old ones. Both algorithms are functionally equivalent with the Horspool version of the Boyer-Moore algorithm when k = 0. Key words: String matching, edit distance, Boyer-Moore algorithm, k mismatches problem, k differences problem AMS (MOS) subject classifications: 68C05, 68C25, 68H05 Abbreviated title: Approximate Boyer-Moore Matching 2 1. Introduction The fastest known exact string matching algorithms are based on the Boyer- Moore idea [BoM77, KMP77]. Such algorithms are “sublinear” on the average in the sense that it is not necessary to check every symbol in the text. The larger is the alphabet and the longer is the pattern, the faster the algorithm works.
    [Show full text]
  • Problem Set 7 Solutions
    Introduction to Algorithms November 18, 2005 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik D. Demaine and Charles E. Leiserson Handout 25 Problem Set 7 Solutions Problem 7-1. Edit distance In this problem you will write a program to compute edit distance. This problem is mandatory. Failure to turn in a solution will result in a serious and negative impact on your term grade! We advise you to start this programming assignment as soon as possible, because getting all the details right in a program can take longer than you think. Many word processors and keyword search engines have a spelling correction feature. If you type in a misspelled word x, the word processor or search engine can suggest a correction y. The correction y should be a word that is close to x. One way to measure the similarity in spelling between two text strings is by “edit distance.” The notion of edit distance is useful in other fields as well. For example, biologists use edit distance to characterize the similarity of DNA or protein sequences. The edit distance d(x; y) of two strings of text, x[1 : : m] and y[1 : : n], is defined to be the minimum possible cost of a sequence of “transformation operations” (defined below) that transforms string x[1 : : m] into string y[1 : : n].1 To define the effect of the transformation operations, we use an auxiliary string z[1 : : s] that holds the intermediate results. At the beginning of the transformation sequence, s = m and z[1 : : s] = x[1 : : m] (i.e., we start with string x[1 : : m]).
    [Show full text]
  • 3. Approximate String Matching
    3. Approximate String Matching Often in applications we want to search a text for something that is similar to the pattern but not necessarily exactly the same. To formalize this problem, we have to specify what does “similar” mean. This can be done by defining a similarity or a distance measure. A natural and popular distance measure for strings is the edit distance, also known as the Levenshtein distance. 109 Edit distance The edit distance ed(A, B) of two strings A and B is the minimum number of edit operations needed to change A into B. The allowed edit operations are: S Substitution of a single character with another character. I Insertion of a single character. D Deletion of a single character. Example 3.1: Let A = Lewensteinn and B = Levenshtein. Then ed(A, B) = 3. The set of edit operations can be described with an edit sequence: NNSNNNINNNND or with an alignment: Lewens-teinn Levenshtein- In the edit sequence, N means No edit. 110 There are many variations and extension of the edit distance, for example: Hamming distance allows only the subtitution operation. • Damerau–Levenshtein distance adds an edit operation: • T Transposition swaps two adjacent characters. With weighted edit distance, each operation has a cost or weight, • which can be other than one. Allow insertions and deletions (indels) of factors at a cost that is lower • than the sum of character indels. We will focus on the basic Levenshtein distance. Levenshtein distance has the following two useful properties, which are not shared by all variations (exercise): Levenshtein distance is a metric.
    [Show full text]
  • Boyer Moore Pattern Matching Algorithm Example
    Boyer Moore Pattern Matching Algorithm Example Sonny still digitizes morganatically while lentic Axel revving that Switzers. Dressier Lewis tabularise some worshipfulness and obscure his neckband so pyramidically! Supernatant Matty dollop judicially while Randie always sang his silva unsaddles Tuesdays, he secularised so liturgically. Pada aplikasi media geometrical formulas for pattern matching algorithm Fast pattern matching algorithm is matched. Wikitechy Founder, Author, International Speaker, and Job Consultant. We consider their famous example pass string matching Boyer-Moore algorithm First and introduce Horspool's Algorithm which connect a simpler example. The current position of the good suffix in the pattern is based on its last character. Algorithms for finding patterns in strings. By one match a matching algorithms tested, boyer moore string is matched character matches while still starts searching, distinctive features of texts. The time complexity of Nave Pattern Search method is Omn. In this account, we debate discuss Boyer Moore pattern searching algorithm. Seek, Plunnge and more. Fluid dynamicist at a path, which group a string matching characters we set for randomly chosen because with an alignment of search algorithm is going to different. Best searching algorithm coding algorithms. Asking for boyer moore algorithm of patterns, there are matched. For example given by using the examples above picture below to find matches should review the term information for example and linear in. Not even a single meal pass, when authorities do is have to easy for efficient in month day to joint life, car keys, books, pen, mobile charger and dock not. If it finds the trumpet, it immediately returns the index.
    [Show full text]
  • More Fuzzy String Matching!
    More fuzzy string matching! Steven Bedrick CS/EE 5/655, 12/1/14 Plan for today: Tries Simple uses of tries Fuzzy search with tries Levenshtein automata A trie is essentially a prefix tree: A: 15 i: 11 in: 5 inn: 9 to: 7 tea: 3 ted: 4 ten: 12 Simple uses of tries: Key lookup in O(m) time, predictably. (Compare to hash table: best-case O(1), worst-case O(n), depending on key) Fast longest-prefix matching IP routing table lookup For an incoming packet, find the closest next hop in a routing table. Simple uses of tries: Fast longest-prefix matching Useful for autocompletion: “All words/names/whatevers that start with XYZ...” The problem with tries: When the space of keys is sparse, the trie is not very compact: (One) Solution: PATRICIA Tries (One) Solution: PATRICIA Tries Key ideas: edges represent more than a single symbol; nodes with only one child get collapsed. One could explicitly represent edges with multiple symbols... ... but that would complicate matching. Instead, each internal node stores the offset for the next difference to look for: 1 e s 3 5 s t e i 6 8 sublease 7 a c t e i e i essence essential estimate estimation sublimate sublime subliminal Instead, each internal node stores the offset for the next difference to look for: 1 e s 3 5 s t e i 6 8 sublease 7 a c t e i e i essence essential estimate estimation sublimate sublime subliminal e s t i m a t i o n i 1 2 3 4 5 6 7 8 9 10 Instead, each internal node stores the offset for the next difference to look for: 1 e s 3 5 s t e i 6 8 sublease 7 a c t e i e i essence essential estimate
    [Show full text]
  • Approximate String Matching Using Compressed Suffix Arrays
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 352 (2006) 240–249 www.elsevier.com/locate/tcs Approximate string matching using compressed suffix arraysଁ Trinh N.D. Huynha, Wing-Kai Honb, Tak-Wah Lamb, Wing-Kin Sunga,∗ aSchool of Computing, National University of Singapore, Singapore bDepartment of Computer Science and Information Systems, The University of Hong Kong, Hong Kong Received 17 August 2004; received in revised form 23 September 2005; accepted 9 November 2005 Communicated by A. Apostolico Abstract Let T be a text of length n and P be a pattern of length m, both strings over a fixed finite alphabet A. The k-difference (k-mismatch, respectively) problem is to find all occurrences of P in T that have edit distance (Hamming distance, respectively) at most k from P . In this paper we investigate a well-studied case in which T is fixed and preprocessed into an indexing data structure so that any pattern k k query can be answered faster. We give a solution using an O(n log n) bits indexing data structure with O(|A| m ·max(k, log n)+occ) query time, where occ is the number of occurrences. The best previous result requires O(n log n) bits indexing data structure and k k+ gives O(|A| m 2 + occ) query time. Our solution also allows us to exploit compressed suffix arrays to reduce the indexing space to O(n) bits, while increasing the query time by an O(log n) factor only.
    [Show full text]
  • Levenshtein Distance Based Information Retrieval Veena G, Jalaja G BNM Institute of Technology, Visvesvaraya Technological University
    International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 112 ISSN 2229-5518 Levenshtein Distance based Information Retrieval Veena G, Jalaja G BNM Institute of Technology, Visvesvaraya Technological University Abstract— In today’s web based applications information retrieval is gaining popularity. There are many advances in information retrieval such as fuzzy search and proximity ranking. Fuzzy search retrieves relevant results containing words which are similar to query keywords. Even if there are few typographical errors in query keywords the system will retrieve relevant results. A query keyword can have many similar words, the words which are very similar to query keywords will be considered in fuzzy search. Ranking plays an important role in web search; user expects to see relevant documents in first few results. Proximity ranking is arranging search results based on the distance between query keywords. In current research information retrieval system is built to search contents of text files which have the feature of fuzzy search and proximity ranking. Indexing the contents of html or pdf files are performed for fast retrieval of search results. Combination of indexes like inverted index and trie index is used. Fuzzy search is implemented using Levenshtein’s Distance or edit distance concept. Proximity ranking is done using binning concept. Search engine system evaluation is done using average interpolated precision at eleven recall points i.e. at 0, 0.1, 0.2…..0.9, 1.0. Precision Recall graph is plotted to evaluate the system. Index Terms— stemming, stop words, fuzzy search, proximity ranking, dictionary, inverted index, trie index and binning.
    [Show full text]
  • A New Edit Distance for Fuzzy Hashing Applications
    326 Int'l Conf. Security and Management | SAM'15 | A New Edit Distance for Fuzzy Hashing Applications V. Gayoso Martínez1, F. Hernández Álvarez1, L. Hernández Encinas1, and C. Sánchez Ávila2 1Information Processing and Cryptography (TIC), Institute of Physical and Information Technologies (ITEFI) Spanish National Research Council (CSIC), Madrid, Spain 2Telecommunication Engineering School (ETSIT), Polytechnic University of Madrid (UPM), Madrid, Spain Abstract— Similarity preserving hashing applications, also similarity of the signatures. In order to do that, ssdeep im- known as fuzzy hashing functions, help to analyse the content plements an edit distance algorithm based on the Damerau- of digital devices by performing a resemblance comparison Levenshtein distance between two strings [4], [5]. That edit between different files. In practice, the similarity matching distance function compares the two strings and counts the procedure is a two-step process, where first a signature minimum number of operations needed to transform one associated to the files under comparison is generated, and into the other, where the allowed operations are insertions, then a comparison of the signatures themselves is performed. deletions, and substitutions of a single character, and trans- Even though ssdeep is the best-known application in positions of two adjacent characters [6], [7]. this field, the edit distance algorithm that ssdeep uses for Even though the success of ssdeep is quite remarkable, performing the signature comparison is not well-suited for its edit distance implementation has important limitations certain scenarios. In this contribution we present a new edit that prevent ssdeep from generating a score that reflects distance algorithm that better reflects the similarity of two the percentage of the bigger file that is also present in strings, and that can be used by fuzzy hashing applications the smaller file, which is the definition of similarity better in order to improve their results.
    [Show full text]
  • The String Edit Distance Matching Problem with Moves
    The String Edit Distance Matching Problem with Moves GRAHAM CORMODE AT&T Labs–Research and S. MUTHUKRISHNAN Rutgers University The edit distance between two strings S and R is defined to be the minimum number of character inserts, deletes and changes needed to convert R to S. Given a text string t of length n, and a pattern string p of length m, informally, the string edit distance matching problem is to compute the smallest edit distance between p and substrings of t. We relax the problem so that (a) we allow an additional operation, namely, sub- string moves, and (b) we allow approximation of this string edit distance. Our result is a near linear time deterministic algorithm to produce a factor of O(log n log∗ n) approximation to the string edit distance with moves. This is the first known significantly subquadratic algorithm for a string edit distance problem in which the distance involves nontrivial alignments. Our results are obtained by embed- ding strings into L1 vector space using a simplified parsing technique we call Edit Sensitive Parsing (ESP). Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complex- ity]: General General Terms: Algorithms, Theory Additional Key Words and Phrases: approximate pattern matching, data streams, edit distance, embedding, similarity search, string matching 1. INTRODUCTION String matching has a long history in computer science, dating back to the first compilers in the sixties and before. Text comparison now appears in all areas of the discipline, from compression and pattern matching to computational biology Author’s addres: G.
    [Show full text]
  • Analysis of Algorithms and Data Structures for Text Indexing
    ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ FAKULTÄT FÜR INFORMATIK ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Effiziente Algorithmen Analysis of Algorithms and Data Structures for Text Indexing Moritz G. Maaß ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ FAKULTÄT FÜR INFORMATIK ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Effiziente Algorithmen Analysis of Algorithms and Data Structures for Text Indexing Moritz G. Maaß Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Dr. h.c. mult. Wilfried Brauer Prüfer der Dissertation: 1. Univ.-Prof. Dr. Ernst W. Mayr 2. Prof. Robert Sedgewick, Ph.D. (Princeton University, New Jersey, USA) Die Dissertation wurde am 12. April 2005 bei der Technischen Universität München eingereicht und durch die Fakultät für Informatik am 26. Juni 2006 angenommen. Abstract Large amounts of textual data like document collections, DNA sequence data, or the Internet call for fast look-up methods that avoid searching the whole corpus. This is often accomplished using tree-based data structures for text indexing such as tries, PATRICIA trees, or suffix trees. We present and analyze improved algorithms and index data structures for exact and error-tolerant search. Affix trees are a data structure for exact indexing. They are a generalization of suffix trees, allowing a bidirectional search by extending a pattern to the left and to the right during retrieval. We present an algorithm that constructs affix trees on-line in both directions, i.e., by augmenting the underlying string in both directions. An amortized analysis yields that the algorithm has a linear-time worst-case complexity. A space efficient method for error-tolerant searching in a dictionary for a pattern allowing some mismatches can be implemented with a trie or a PATRICIA tree.
    [Show full text]