An Algorithm to Generate Two-Dimensional Drawings of Conway Algebraic Knots Jen-Fu Tung Western Kentucky University, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

An Algorithm to Generate Two-Dimensional Drawings of Conway Algebraic Knots Jen-Fu Tung Western Kentucky University, Jen-Fu.Tung994@Wku.Edu Western Kentucky University TopSCHOLAR® Masters Theses & Specialist Projects Graduate School 5-2010 An Algorithm to Generate Two-Dimensional Drawings of Conway Algebraic Knots Jen-Fu Tung Western Kentucky University, [email protected] Follow this and additional works at: http://digitalcommons.wku.edu/theses Part of the Discrete Mathematics and Combinatorics Commons, and the Numerical Analysis and Computation Commons Recommended Citation Tung, Jen-Fu, "An Algorithm to Generate Two-Dimensional Drawings of Conway Algebraic Knots" (2010). Masters Theses & Specialist Projects. Paper 163. http://digitalcommons.wku.edu/theses/163 This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. AN ALGORITHM TO GENERATE TWO-DIMENSIONAL DRAWINGS OF CONWAY ALGEBRAIC KNOTS A Thesis Presented to The Faculty of the Department of Mathematics and Computer Science Western Kentucky University Bowling Green, Kentucky In Partial Fulfillment Of the Requirements for the Degree Master of Science By Jen-Fu Tung May 2010 AN ALGORITHM TO GENERATE TWO-DIMENSIONAL DRAWINGS OF CONWAY ALGEBRAIC KNOTS Date Recommended __April 28, 2010___ __ Uta Ziegler ____________________ Director of Thesis __ Claus Ernst ____________________ __ Mustafa Atici __________________ ______________________________________ Dean, Graduate Studies and Research Date ACKNOWLEDGMENTS I would first like to acknowledge my thesis advisor, Dr. Uta Ziegler, for providing her guidance and great support on my studies of theory and programming in her lab since 2008. My writing, programming, and confidence have greatly improved under her supervision and encouragement. It has really been an honor to work with Dr. Ziegler. I would also like to express gratitude to my committee members, Dr. Claus Ernst and Dr. Mustafa Atici, for all the suggestions and corrections that made this thesis a solid, influential piece of work. I would like to show my appreciation for the faculty and staff of the Department of Mathematics and Computer Science at WKU for their help throughout my graduate research and study here. Special thanks to my parents and sister in Taiwan for their concerns and support to give me the strength to make this work possible. i TABLE OF CONTENTS CHAPTER 1: INTRODUCTION AND BASIC DEFINITIONS ....................................... 3 1.1 Introduction ............................................................................................................... 3 1.2 Basic definitions ........................................................................................................ 4 CHAPTER 2: RESEARCH ON GENERATING KNOT GRAPHS AND KNOT DRAWINGS ................................................................................................................ 11 2.1 Generating a planar map for a knot ......................................................................... 11 2.1.1 Generating a planar map for a knot using a rooted binary tree ........................ 11 2.1.2 Generating a planar map for a knot using a Hamiltonian cycle ....................... 18 2.2 Existing knot drawing algorithms ........................................................................... 20 CHAPTER 3: GENERATING CONWAY ALGEBRAIC KNOT DRAWINGS ............ 24 3.1 Conway algebraic knots and rooted binary trees .................................................... 24 3.2 Generating constructed planar maps using Conway algebraic trees ....................... 28 3.2.1 Generating a Conway algebraic tree ................................................................ 29 3.2.2 Generating a constructed planar map from a Conway algebraic tree .............. 35 3.3 Tree reduction operations ....................................................................................... 50 3.4 Flype operations ...................................................................................................... 73 CHAPTER 4: CONCLUSIONS ....................................................................................... 90 REFERENCES ................................................................................................................. 92 ii LIST OF FIGURES Figure 1.2.1. Crossings drawn in a regular planar projection. ............................................ 7 Figure 1.2.2. Four half-twists. ............................................................................................. 7 Figure 1.2.3. An example of a flype operation. Circles A and B are tangles. .................... 7 Figure 1.2.4. Two knots are alternating knots. (A) is a knot with three-crossings (also as known as the trefoil knot). (B) is a knot with seven-crossings....................................... 8 Figure 1.2.5. Forming a composite knot. ............................................................................ 8 Figure 1.2.6. Two types of Conway regions. ...................................................................... 9 Figure 1.2.7. An algebraic decomposition of a Conway algebraic knot. ............................ 9 Figure 2.1.1. A bridge graph that represents 1100011001. ............................................... 12 Figure 2.1.2. A bridge graph after adding an extra down edge. It represents 11000110010..................................................................................................................... 13 Figure 2.1.3. A new bridge graph with the positive prefix property obtained from Figure 2.1.2. The number in parentheses is the original number in Figure 2.1.2. ............ 15 Figure 2.1.4. A sequence pictures for a rooted binary tree generated by the binary string “111010000.” .................................................................................................................... 16 Figure 2.1.5. A rooted binary tree with additional edges added. ...................................... 17 Figure 2.1.6. Connecting new edges from internal vertices to the nearest leaf vertices. .. 17 Figure 2.1.7. The final connection for generating a rooted 4-regular planar map. ........... 18 Figure 2.1.8. The map drawn using a permutation vector {1, 3, 2, 5, 4, 2, 3, 6, 6, 4, 5, 7, 7, 1}. .................................................................................................................................. 19 Figure 2.1.9. An example to show the replacement of an intersecting edge. ................... 19 Figure 2.2.1. An example of circle packing. ..................................................................... 21 Figure 2.2.2. A 19-crossings planar graph generated by Mathematica. ........................... 21 Figure 2.2.3. Part of the Knotplot’s catalogue table. ........................................................ 22 Figure 2.2.4. A knot with three-crossings (the trefoil knot) generated by Knotplot. ........ 22 iii Figure 3.1.1. A Conway algebraic knot diagram decomposed by a set of Conway circles. ............................................................................................................................... 25 Figure 3.1.2. A Conway algebraic knot diagram with a set of Conway circles and its preferred shading. ............................................................................................................. 26 Figure 3.1.3. A CAD with a set of Conway circles and its preferred shading together with the corresponding preferred tree. The circles op1, op2, and op3 are referenced in section 3.2.1. ..................................................................................................................... 28 Figure 3.2.1. An example of the same rooted binary tree can be derived from two different Conway algebraic knot diagrams. ...................................................................... 30 Figure 3.2.2. The relationship of knots, Conway algebraic diagrams, and rooted binary trees. .................................................................................................................................. 30 Figure 3.2.3. RL overpass edge, LR overpass edge, and normal edge. ............................ 31 Figure 3.2.4. Possible arrangement of two Conway circles. Only (B) and (C) can cause an overpass edge. (A) shows a normal edge. .................................................................... 33 Figure 3.2.5. The relationship of knots, Conway algebraic diagrams, and CATs. ........... 33 Figure 3.2.6. A rooted binary tree generated from Figure 2.1.3. The name on each node is for use in Figure 3.2.7. .................................................................................................. 34 Figure 3.2.7. A screen shot of a CAT embedded by using the positive prefix binary string obtained from Figure 3.2.6 and added overpass type on some edges. A1 is the root of the displayed CAT. ....................................................................................................... 35 Figure 3.2.8. (A) is a simple box (dashed line); (B) is a combo box (dashed line) with two boxes (simple or combo) inside. ................................................................................ 37 Figure 3.2.9. We shade the upper side of the pair of type III Conway sub-regions in the combo box K′ for the internal node K. .............................................................................. 37 Figure 3.2.10. Pictures showing different rotations for a child box. (A) shows no rotation of box Pi′, (B) shows that an LR overpass edge
Recommended publications
  • Tait's Flyping Conjecture for 4-Regular Graphs
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Journal of Combinatorial Theory, Series B 95 (2005) 318–332 www.elsevier.com/locate/jctb Tait’s flyping conjecture for 4-regular graphs Jörg Sawollek Fachbereich Mathematik, Universität Dortmund, 44221 Dortmund, Germany Received 8 July 1998 Available online 19 July 2005 Abstract Tait’s flyping conjecture, stating that two reduced, alternating, prime link diagrams can be connected by a finite sequence of flypes, is extended to reduced, alternating, prime diagrams of 4-regular graphs in S3. The proof of this version of the flyping conjecture is based on the fact that the equivalence classes with respect to ambient isotopy and rigid vertex isotopy of graph embeddings are identical on the class of diagrams considered. © 2005 Elsevier Inc. All rights reserved. Keywords: Knotted graph; Alternating diagram; Flyping conjecture 0. Introduction Very early in the history of knot theory attention has been paid to alternating diagrams of knots and links. At the end of the 19th century Tait [21] stated several famous conjectures on alternating link diagrams that could not be verified for about a century. The conjectures concerning minimal crossing numbers of reduced, alternating link diagrams [15, Theorems A, B] have been proved independently by Thistlethwaite [22], Murasugi [15], and Kauffman [6]. Tait’s flyping conjecture, claiming that two reduced, alternating, prime diagrams of a given link can be connected by a finite sequence of so-called flypes (see [4, p. 311] for Tait’s original terminology), has been shown by Menasco and Thistlethwaite [14], and for a special case, namely, for well-connected diagrams, also by Schrijver [20].
    [Show full text]
  • Categorified Invariants and the Braid Group
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 143, Number 7, July 2015, Pages 2801–2814 S 0002-9939(2015)12482-3 Article electronically published on February 26, 2015 CATEGORIFIED INVARIANTS AND THE BRAID GROUP JOHN A. BALDWIN AND J. ELISENDA GRIGSBY (Communicated by Daniel Ruberman) Abstract. We investigate two “categorified” braid conjugacy class invariants, one coming from Khovanov homology and the other from Heegaard Floer ho- mology. We prove that each yields a solution to the word problem but not the conjugacy problem in the braid group. In particular, our proof in the Khovanov case is completely combinatorial. 1. Introduction Recall that the n-strand braid group Bn admits the presentation σiσj = σj σi if |i − j|≥2, Bn = σ1,...,σn−1 , σiσj σi = σjσiσj if |i − j| =1 where σi corresponds to a positive half twist between the ith and (i + 1)st strands. Given a word w in the generators σ1,...,σn−1 and their inverses, we will denote by σ(w) the corresponding braid in Bn. Also, we will write σ ∼ σ if σ and σ are conjugate elements of Bn. As with any group described in terms of generators and relations, it is natural to look for combinatorial solutions to the word and conjugacy problems for the braid group: (1) Word problem: Given words w, w as above, is σ(w)=σ(w)? (2) Conjugacy problem: Given words w, w as above, is σ(w) ∼ σ(w)? The fastest known algorithms for solving Problems (1) and (2) exploit the Gar- side structure(s) of the braid group (cf.
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE P-Coloring Of
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE P-Coloring of Pretzel Knots A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mathematics By Robert Ostrander December 2013 The thesis of Robert Ostrander is approved: |||||||||||||||||| |||||||| Dr. Alberto Candel Date |||||||||||||||||| |||||||| Dr. Terry Fuller Date |||||||||||||||||| |||||||| Dr. Magnhild Lien, Chair Date California State University, Northridge ii Dedications I dedicate this thesis to my family and friends for all the help and support they have given me. iii Acknowledgments iv Table of Contents Signature Page ii Dedications iii Acknowledgements iv Abstract vi Introduction 1 1 Definitions and Background 2 1.1 Knots . .2 1.1.1 Composition of knots . .4 1.1.2 Links . .5 1.1.3 Torus Knots . .6 1.1.4 Reidemeister Moves . .7 2 Properties of Knots 9 2.0.5 Knot Invariants . .9 3 p-Coloring of Pretzel Knots 19 3.0.6 Pretzel Knots . 19 3.0.7 (p1, p2, p3) Pretzel Knots . 23 3.0.8 Applications of Theorem 6 . 30 3.0.9 (p1, p2, p3, p4) Pretzel Knots . 31 Appendix 49 v Abstract P coloring of Pretzel Knots by Robert Ostrander Master of Science in Mathematics In this thesis we give a brief introduction to knot theory. We define knot invariants and give examples of different types of knot invariants which can be used to distinguish knots. We look at colorability of knots and generalize this to p-colorability. We focus on 3-strand pretzel knots and apply techniques of linear algebra to prove theorems about p-colorability of these knots.
    [Show full text]
  • Jhep07(2018)145
    Published for SISSA by Springer Received: April 13, 2018 Accepted: July 16, 2018 Published: July 23, 2018 Symmetry enhancement and closing of knots in 3d/3d JHEP07(2018)145 correspondence Dongmin Ganga and Kazuya Yonekurab aCenter for Theorectical Physics, Seoul National University, Seoul 08826, Korea bKavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8583, Japan E-mail: [email protected], [email protected] Abstract: We revisit Dimofte-Gaiotto-Gukov's construction of 3d gauge theories asso- ciated to 3-manifolds with a torus boundary. After clarifying their construction from a viewpoint of compactification of a 6d N = (2; 0) theory of A1-type on a 3-manifold, we propose a topological criterion for SU(2)=SO(3) flavor symmetry enhancement for the u(1) symmetry in the theory associated to a torus boundary, which is expected from the 6d viewpoint. Base on the understanding of symmetry enhancement, we generalize the con- struction to closed 3-manifolds by identifying the gauge theory counterpart of Dehn filling operation. The generalized construction predicts infinitely many 3d dualities from surgery calculus in knot theory. Moreover, by using the symmetry enhancement criterion, we show that theories associated to all hyperboilc twist knots have surprising SU(3) symmetry en- hancement which is unexpected from the 6d viewpoint. Keywords: Chern-Simons Theories, Conformal Field Theory, Duality in Gauge Field Theories, M-Theory ArXiv ePrint: 1803.04009 Open Access, c The Authors.
    [Show full text]
  • Maximum Knotted Switching Sequences
    Maximum Knotted Switching Sequences Tom Milnor August 21, 2008 Abstract In this paper, we define the maximum knotted switching sequence length of a knot projection and investigate some of its properties. In par- ticular, we examine the effects of Reidemeister and flype moves on maxi- mum knotted switching sequences, show that every knot has projections having a full sequence, and show that all minimal alternating projections of a knot have the same length maximum knotted switching sequence. Contents 1 Introduction 2 1.1 Basic definitions . 2 1.2 Changing knot projections . 3 2 Maximum knotted switching sequences 4 2.1 Immediate bounds . 4 2.2 Not all maximal knotted switching sequences are maximum . 5 2.3 Composite knots . 5 2.4 All knots have a projection with a full sequence . 6 2.5 An infinite family of knots with projections not having full se- quences . 6 3 The effects of Reidemeister moves on the maximum knotted switching sequence length of a knot projection 7 3.1 Type I Reidemeister moves . 7 3.2 Type II Reidemeister moves . 8 3.3 Alternating knots and Type II Reidemeister moves . 9 3.4 The Conway polynomial and Type II Reidemeister moves . 13 3.5 Type III Reidemeister moves . 15 4 The maximum sequence length of minimal alternating knot pro- jections 16 4.1 Flype moves . 16 1 1 Introduction 1.1 Basic definitions A knot is a smooth embedding of S1 into R3 or S3. A knot is said to be an unknot if it is isotopic to S1 ⊂ R3. Otherwise it is knotted.
    [Show full text]
  • Knot and Link Tricolorability Danielle Brushaber Mckenzie Hennen Molly Petersen Faculty Mentor: Carolyn Otto University of Wisconsin-Eau Claire
    Knot and Link Tricolorability Danielle Brushaber McKenzie Hennen Molly Petersen Faculty Mentor: Carolyn Otto University of Wisconsin-Eau Claire Problem & Importance Colorability Tables of Characteristics Theorem: For WH 51 with n twists, WH 5 is tricolorable when Knot Theory, a field of Topology, can be used to model Original Knot The unknot is not tricolorable, therefore anything that is tri- 1 colorable cannot be the unknot. The prime factors of the and understand how enzymes (called topoisomerases) work n = 3k + 1 where k ∈ N ∪ {0}. in DNA processes to untangle or repair strands of DNA. In a determinant of the knot or link provides the colorability. For human cell nucleus, the DNA is linear, so the knots can slip off example, if a knot’s determinant is 21, it is 3-colorable (tricol- orable), and 7-colorable. This is known by the theorem that Proof the end, and it is difficult to recognize what the enzymes do. Consider WH 5 where n is the number of the determinant of a knot is 0 mod n if and only if the knot 1 However, the DNA in mitochon- full positive twists. n is n-colorable. dria is circular, along with prokary- Link Colorability Det(L) Unknot/Link (n = 1...n = k) otic cells (bacteria), so the enzyme L Number Theorem: If det(L) = 0, then L is WOLOG, let WH 51 be colored in this way, processes are more noticeable in 3 3 3 1 n 1 n-colorable for all n. excluding coloring the twist component. knots in this type of DNA.
    [Show full text]
  • The Kauffman Bracket and Genus of Alternating Links
    California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 6-2016 The Kauffman Bracket and Genus of Alternating Links Bryan M. Nguyen Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Other Mathematics Commons Recommended Citation Nguyen, Bryan M., "The Kauffman Bracket and Genus of Alternating Links" (2016). Electronic Theses, Projects, and Dissertations. 360. https://scholarworks.lib.csusb.edu/etd/360 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. The Kauffman Bracket and Genus of Alternating Links A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Bryan Minh Nhut Nguyen June 2016 The Kauffman Bracket and Genus of Alternating Links A Thesis Presented to the Faculty of California State University, San Bernardino by Bryan Minh Nhut Nguyen June 2016 Approved by: Dr. Rolland Trapp, Committee Chair Date Dr. Gary Griffing, Committee Member Dr. Jeremy Aikin, Committee Member Dr. Charles Stanton, Chair, Dr. Corey Dunn Department of Mathematics Graduate Coordinator, Department of Mathematics iii Abstract Giving a knot, there are three rules to help us finding the Kauffman bracket polynomial. Choosing knot's orientation, then applying the Seifert algorithm to find the Euler characteristic and genus of its surface. Finally finding the relationship of the Kauffman bracket polynomial and the genus of the alternating links is the main goal of this paper.
    [Show full text]
  • Arxiv:2108.09698V1 [Math.GT] 22 Aug 2021
    Submitted to Topology Proceedings THE TABULATION OF PRIME KNOT PROJECTIONS WITH THEIR MIRROR IMAGES UP TO EIGHT DOUBLE POINTS NOBORU ITO AND YUSUKE TAKIMURA Abstract. This paper provides the complete table of prime knot projections with their mirror images, without redundancy, up to eight double points systematically thorough a finite procedure by flypes. In this paper, we show how to tabulate the knot projec- tions up to eight double points by listing tangles with at most four double points by an approach with respect to rational tangles of J. H. Conway. In other words, for a given prime knot projection of an alternating knot, we show how to enumerate possible projec- tions of the alternating knot. Also to tabulate knot projections up to ambient isotopy, we introduce arrow diagrams (oriented Gauss diagrams) of knot projections having no over/under information of each crossing, which were originally introduced as arrow diagrams of knot diagrams by M. Polyak and O. Viro. Each arrow diagram of a knot projection completely detects the difference between the knot projection and its mirror image. 1. Introduction arXiv:2108.09698v1 [math.GT] 22 Aug 2021 Arnold ([2, Figure 53], [3, Figure 15]) obtained a table of reduced knot projections (equivalently, reduced generic immersed spherical curves) up to seven double points. In Arnold’s table, the number of prime knot pro- jections with seven double points is six. However, this table is incomplete (see Figure 1, which equals [2, Figure 53]). Key words and phrases. knot projection; tabulation; flype MSC 2010: 57M25, 57Q35. 1 2 NOBORU ITO AND YUSUKE TAKIMURA Figure 1.
    [Show full text]
  • The Geometric Content of Tait's Conjectures
    The geometric content of Tait's conjectures Ohio State CKVK* seminar Thomas Kindred, University of Nebraska-Lincoln Monday, November 9, 2020 Historical background: Tait's conjectures, Fox's question Tait's conjectures (1898) Let D and D0 be reduced alternating diagrams of a prime knot L. (Prime implies 6 9 T1 T2 ; reduced means 6 9 T .) Then: 0 (1) D and D minimize crossings: j jD = j jD0 = c(L): 0 0 (2) D and D have the same writhe: w(D) = w(D ) = j jD0 − j jD0 : (3) D and D0 are related by flype moves: T 2 T1 T2 T1 Question (Fox, ∼ 1960) What is an alternating knot? Tait's conjectures all remained open until the 1985 discovery of the Jones polynomial. Fox's question remained open until 2017. Historical background: Proofs of Tait's conjectures In 1987, Kauffman, Murasugi, and Thistlethwaite independently proved (1) using the Jones polynomial, whose degree span is j jD , e.g. V (t) = t + t3 − t4. Using the knot signature σ(L), (1) implies (2). In 1993, Menasco-Thistlethwaite proved (3), using geometric techniques and the Jones polynomial. Note: (3) implies (2) and part of (1). They asked if purely geometric proofs exist. The first came in 2017.... Tait's conjectures (1898) T 2 GivenT1 reducedT2 alternatingT1 diagrams D; D0 of a prime knot L: 0 (1) D and D minimize crossings: j jD = j jD0 = c(L): 0 0 (2) D and D have the same writhe: w(D) = w(D ) = j jD0 − j jD0 : (3) D and D0 are related by flype moves: Historical background: geometric proofs Question (Fox, ∼ 1960) What is an alternating knot? Theorem (Greene; Howie, 2017) 3 A knot L ⊂ S is alternating iff it has spanning surfaces F+ and F− s.t.: • Howie: 2(β1(F+) + β1(F−)) = s(F+) − s(F−).
    [Show full text]
  • Dehornoy's Ordering on the Braid Group and Braid
    Algebra i analiz St. Petersburg Math. J. Tom. 15 (2003), vyp. 3 Vol. 15 (2004), No. 3, Pages 437{448 S 1061-0022(04)00816-7 Article electronically published on March 30, 2004 DEHORNOY'S ORDERING ON THE BRAID GROUP AND BRAID MOVES A. V. MALYUTIN AND N. YU. NETSVETAEV Abstract. In terms of Dehornoy's ordering on the braid group Bn, restrictions are found that prevent us from performing the Markov destabilization and the Birman{ Menasco braid moves. As a consequence, a sufficient condition is obtained for the link represented by a braid to be prime, and it is shown that all braids in Bn that are not minimal lie in a finite interval of Dehornoy's ordering. Introduction 0.1. It is known that any classical link in R3 is representable by a closed braid, and the set of such closed braids is infinite. By a braid move we mean the passage from a closed braid βb to another closed braid representing the same link as βb. Many essential results of the theory of braids and links are related to the moves of stabilization and destabilization introduced by Markov, as well as to the \exchange move" and the \flype" defined by Birman and Menasco. While stabilization can always be performed, the other moves mentioned above do not apply to some braids. 0.2. In the present paper, we establish some restrictions on the possibility of performing braid moves; the restrictions are formulated in terms of Dehornoy's ordering. Combin- ing them with the known results concerning such transformations, we obtain conditions sufficient for the primeness of the link represented by a braid (these conditions are also formulated in terms of Dehornoy's ordering) and prove that there exists a similar criterion of the minimality of a braid.
    [Show full text]
  • Knots of Genus One Or on the Number of Alternating Knots of Given Genus
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 7, Pages 2141{2156 S 0002-9939(01)05823-3 Article electronically published on February 23, 2001 KNOTS OF GENUS ONE OR ON THE NUMBER OF ALTERNATING KNOTS OF GIVEN GENUS A. STOIMENOW (Communicated by Ronald A. Fintushel) Abstract. We prove that any non-hyperbolic genus one knot except the tre- foil does not have a minimal canonical Seifert surface and that there are only polynomially many in the crossing number positive knots of given genus or given unknotting number. 1. Introduction The motivation for the present paper came out of considerations of Gauß di- agrams recently introduced by Polyak and Viro [23] and Fiedler [12] and their applications to positive knots [29]. For the definition of a positive crossing, positive knot, Gauß diagram, linked pair p; q of crossings (denoted by p \ q)see[29]. Among others, the Polyak-Viro-Fiedler formulas gave a new elegant proof that any positive diagram of the unknot has only reducible crossings. A \classical" argument rewritten in terms of Gauß diagrams is as follows: Let D be such a diagram. Then the Seifert algorithm must give a disc on D (see [9, 29]). Hence n(D)=c(D)+1, where c(D) is the number of crossings of D and n(D)thenumber of its Seifert circles. Therefore, smoothing out each crossing in D must augment the number of components. If there were a linked pair in D (that is, a pair of crossings, such that smoothing them both out according to the usual skein rule, we obtain again a knot rather than a three component link diagram) we could choose it to be smoothed out at the beginning (since the result of smoothing out all crossings in D obviously is independent of the order of smoothings) and smoothing out the second crossing in the linked pair would reduce the number of components.
    [Show full text]
  • Arxiv:2104.14076V1 [Math.GT] 29 Apr 2021 Gauss Codes for Each of the Unknot Diagrams Discussed in This Note in Ap- Pendixa
    HARD DIAGRAMS OF THE UNKNOT BENJAMIN A. BURTON, HSIEN-CHIH CHANG, MAARTEN LÖFFLER, ARNAUD DE MESMAY, CLÉMENT MARIA, SAUL SCHLEIMER, ERIC SEDGWICK, AND JONATHAN SPREER Abstract. We present three “hard” diagrams of the unknot. They re- quire (at least) three extra crossings before they can be simplified to the 2 trivial unknot diagram via Reidemeister moves in S . Both examples are constructed by applying previously proposed methods. The proof of their hardness uses significant computational resources. We also de- termine that no small “standard” example of a hard unknot diagram 2 requires more than one extra crossing for Reidemeister moves in S . 1. Introduction Hard diagrams of the unknot are closely connected to the complexity of the unknot recognition problem. Indeed a natural approach to solve instances of the unknot recognition problem is to untangle a given unknot diagram by Reidemeister moves. Complicated diagrams may require an exhaustive search in the Reidemeister graph that very quickly becomes infeasible. As a result, such diagrams are the topic of numerous publications [5, 6, 11, 12, 15], as well as discussions by and resources provided by leading researchers in low-dimensional topology [1,3,7, 14]. However, most classical examples of hard diagrams of the unknot are, in fact, easy to handle in practice. Moreover, constructions of more difficult examples often do not come with a rigorous proof of their hardness [5, 12]. The purpose of this note is hence two-fold. Firstly, we provide three un- knot diagrams together with a proof that they are significantly more difficult to untangle than classical examples.
    [Show full text]