Metastasis-Associated Protein 2 Represses NF-Ƙb to Reduce Lung Tumor Growth And

Total Page:16

File Type:pdf, Size:1020Kb

Metastasis-Associated Protein 2 Represses NF-Ƙb to Reduce Lung Tumor Growth And Author Manuscript Published OnlineFirst on August 14, 2020; DOI: 10.1158/0008-5472.CAN-20-1158 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Metastasis-associated protein 2 represses NF-ƙB to reduce lung tumor growth and 2 inflammation 3 Nefertiti El-Nikhely1#, Annika Karger1, Poonam Sarode1, Indrabahadur Singh1§, Andreas 4 Weigert2, Astrid Wietelmann1, Thorsten Stiewe3, Reinhard Dammann4, Ludger Fink5, 5 Friedrich Grimminger6, Guillermo Barreto1,7, Werner Seeger1,6,8, Soni S. Pullamsetti1,6, Ulf R. 6 Rapp1, Rajkumar Savai1,6,8* 7 Affiliations: 1Max Planck Institute for Heart and Lung Research, Member of the German 8 Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad 9 Nauheim, Germany; 2Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, 10 Germany; 3Institute of Molecular Oncology, Member of the DZL, Philipps-University 11 Marburg, Marburg, Germany; 4Institute for Genetics; member of the German Center for 12 Lung Research (DZL), Justus-Liebig-University, Giessen, Germany; 5Institute of Pathology and 13 Cytology, UEGP, Wetzlar, Germany; 6Department of Internal Medicine, Member of the DZL, 14 Member of CPI, Justus Liebig University, Giessen, Germany; 7Brain and Lung Epigenetics 15 (BLUE), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université 16 Paris-Est Créteil (UPEC), Créteil, France; 8Institute for Lung Health (ILH), Justus Liebig 17 University, Giessen, Germany; #present address: Department of Biotechnology, Institute of 18 Graduate Studies and Research, Alexandria University, Egypt; §present address: Emmy 19 Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic 20 Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany. 21 Running title: MTA2/NuRD complex in lung cancer 22 Keywords: cRaf/Inflammation/ Lung cancer/ MTA2/ NF-ƙB/ NuRD 1 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 14, 2020; DOI: 10.1158/0008-5472.CAN-20-1158 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 23 *Correspondence: PD Dr. Rajkumar Savai, Molecular Mechanisms in Lung Cancer, 24 Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung 25 Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany, Tel: +49 6032 705 420; Fax: +49 26 6032 705 471, Email: [email protected] 27 Financial support: R. Savai, S.S. Pullamsetti, W. Seeger and U.R. Rapp supported by the Max 28 Planck Society. R. Savai, S.S. Pullamsetti, T. Stiewe, F. Grimminger, R. Dammann, G. Barreto, 29 W. Seeger and U.R. Rapp supported by the UGMLC and Loewe Program. U.R. Rapp received 30 a grant from German Cancer Aid (Deutsche Krebshilfe; 109081). R. Savai and S.S. Pullamsetti 31 received Von-Behring-Röntgen-Stiftung (projects 66-LV06 and 63-LV01). R. Savai, S.S. 32 Pullamsetti, W. Seeger and F. Grimminger supported by Cardio-Pulmonary Institute (CPI). R. 33 Savai, S.S. Pullamsetti, T. Stiewe, R. Dammann, W. Seeger and F. Grimminger supported by 34 the German Center for Lung Research (DZL). R. Savai and S.S. Pullamsetti supported by the 35 German Research Foundation (DFG) by the CRC1213 (Collaborative Research Center 1213), 36 projects A01 (S.S. Pullamsetti), A05 (S.S. Pullamsetti) A10* (R. Savai). S.S. Pullamsetti 37 received European Research Council (ERC) Consolidator Grant (866051). 38 Author contributions: R.S., U.R.R, W.S. F.G. planned and initiated the project, and 39 supervised the entire project; N.E., S.S.P., I.S., P.S., G.B., R.S. designed experiments and 40 analyzed the data; N.E., A.H.K performed MTA2 cell culture experiments; P.S. and N.E. 41 performed ChIP experiments and Western blots; N.E., R.S., SSP., wrote the manuscript; T.S., 42 R.D., provided important constructs and reagents; N.E., As. W. performed MRI analysis. An. 43 W. performed FACS analysis. N.E., I.S., G.B. performed cell fractionation experiments and 44 analyzed data. 45 Competing financial interests: The authors declare no competing financial interests. 2 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 14, 2020; DOI: 10.1158/0008-5472.CAN-20-1158 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 46 Supplementary data for this article are available at Cancer Research Online 45 47 (http://cancerres.aacrjournals.org/). 48 Abstract 49 Although NF-ƙB is known to play a pivotal role in lung cancer, contributing to tumor growth, 50 microenvironmental changes, and metastasis, the epigenetic regulation of NF-ƙB in tumor 51 context is largely unknown. Here we report that the IKK2/NF-ƙB signaling pathway 52 modulates metastasis-associated protein 2 (MTA2), a component of the nucleosome 53 remodeling and deacetylase complex (NuRD). In triple transgenic mice, downregulation of 54 IKK2 (Sftpc-cRaf-IKK2DN) in cRaf-induced tumors in alveolar epithelial type-II cells restricted 55 tumor formation, whereas activation of IKK2 (Sftpc-cRaf-IKK2CA) supported tumor growth; 56 both effects were accompanied by altered expression of MTA2. Further studies employing 57 genetic inhibition of MTA2 suggested that in primary tumor growth, independent of IKK2, 58 MTA2/NuRD corepressor complex negatively regulates NF-ƙB signaling and tumor growth, 59 while later dissociation of MTA2/NuRD complex from the promoter of NF-ƙB target genes 60 and IKK2-dependent positive regulation of MTA2 leads to activation of NF-ƙB signaling, 61 epithelial mesenchymal transition, and lung tumor metastasis. These findings reveal a 62 previously unrecognized biphasic role of MTA2 in IKK2/NF-ƙB-driven primary-to-metastatic 63 lung tumor progression. Addressing the interaction between MTA2 and NF-ƙB would provide 64 potential targets for intervention of tumor growth and metastasis. 65 Statement of significance 66 Findings strongly suggest a prominent role of MTA2 in primary tumor growth, lung 67 metastasis, and NF-ƙB signaling modulatory functions 68 3 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 14, 2020; DOI: 10.1158/0008-5472.CAN-20-1158 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 69 70 Introduction 71 Lung cancer is a multifaceted disease in which inflammation plays an important role in 72 tumor progression. Mutation of KRas occurs in 30% lung adenocarcinoma cases. Blasco et al. 73 using KRas+/G12V mice concluded that cRaf expression was found to be essential for 74 mediating KRas signaling and tumor formation. Several subsequent studies revealed a 75 potential role for cRaf in lung development and carcinogenesis (1,2). 76 Previous studies have shown that cRaf activates not only the mitogenic cascade but also NF- 77 ƙB signaling either via an autocrine loop or even more direct through MEKK1 (3). NF-ƙB 78 transcription factor dependent signaling demonstrated as a key player in diverse immune 79 and inflammatory responses and regulates a wide range of genes (4,5), many of which play 80 roles in neoplastic transformation. Indeed, aberrant NF-ƙB expression and activity are 81 observed in many cancers (6). As to the NF-ƙB signaling, in unstimulated cells, the NF- 82 ƙB1/RelA (p50/p65)– heterodimers are sequestered in the cytoplasm by a family of 83 inhibitors called IƙBs (Inhibitor of ƙB). Whereas, upon stimulation, activation of the NF-ƙB is 84 initiated by the signal-induced degradation of IƙB proteins, which occurs primarily via 85 activation of a kinase called the IƙB kinase (IKK). IKK is composed of a heterodimer of the 86 catalytic IKKα and IKKβ (also known as IKK1 and IKK2, respectively) subunits and a regulatory 87 protein NEMO (NF-ƙB essential modulator) or IKKγ (7). Several studies have attempted the 88 use of selective IKK2 inhibitors to modulate NF-ƙB activity since targeting NF-ƙB sensitizes 89 cancer cells to chemotherapy in non-small-cell lung carcinoma (NSCLC) (8) and breast cancer 90 (9). In support of these data, Bay11-7085, a selective IKK2 inhibitor, increases the 4 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 14, 2020; DOI: 10.1158/0008-5472.CAN-20-1158 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 91 therapeutic effectiveness of bortezomib, a proteasome inhibitor, for ovarian cancer (10). 92 However, these attempts failed to reach final clinical trials owing to their off-target effects. 93 These studies emphasize the importance of acquiring more insight into the regulation of NF- 94 ƙB. Increasing evidence has shown that NF-ƙB is regulated epigenetically, especially in the 95 context of tumorigenesis. For example, members of NF-ƙB family can, themselves, act as 96 epigenetic regulators of NF-ƙB–dependent gene activation; the homodimer of p50 interacts 97 with HDAC1 to inhibit pro-inflammatory genes (11). This inhibition has also been reported 98 with respect to lipopolysaccharide (LPS) tolerance (12). A study concerning acute myeloid 99 leukemia suggests that C/EBP displaces HDACs from p50 homodimers and thus drives the 100 activation of anti-apoptotic genes (13). Another mechanism for epigenetic regulation is via 101 diverse chromosome regulatory machinery such as the nucleosome and remodelling 102 deacetylase complex (NuRD) complex. The NuRD complex was first discovered in 1998 in 103 different species. NuRD is critical for chromatin assembly, transcription, and genomic 104 stability (14). Its main structural components are metastasis-associated proteins 1/2 105 (MTA1/2), retinoblastoma protein associated protein 46/48 (RbAp46/48); its enzymatic 106 components are chromodomain helicase DNA binding protein 3/4 (CHD3/4) and HDAC1/2.
Recommended publications
  • Single Nucleotide Variants in Metastasis-Related Genes Are
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE HHS Public Access provided by CDC Stacks Author manuscript Author ManuscriptAuthor Manuscript Author Mol Carcinog Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 March 01. Published in final edited form as: Mol Carcinog. 2017 March ; 56(3): 1000–1009. doi:10.1002/mc.22565. Single nucleotide variants in metastasis-related genes are associated with breast cancer risk, by lymph node involvement and estrogen receptor status, in women with European and African ancestry Michelle R. Roberts1,2,3, Lara E. Sucheston-Campbell4, Gary R. Zirpoli5, Michael Higgins6, Jo L. Freudenheim3, Elisa V. Bandera7, Christine B. Ambrosone2, and Song Yao2 1Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 2Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 3Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 4Division of Pharmacy Practice and Science, The Ohio State University, Columbus, OH 5Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 6Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 7Rutgers Cancer Institute of New Jersey, New Brunswick, NJ Abstract Background—Single nucleotide polymorphisms (SNPs) in pathways influencing lymph node (LN) metastasis and estrogen receptor (ER) status in breast cancer may partially explain inter- patient variability in prognosis. We examined 154 SNPs in 12 metastasis-related genes for associations with breast cancer risk, stratified by LN and ER status, in European-American (EA) and African-American (AA) women. Methods—2,671 women enrolled in the Women’s Circle of Health Study were genotyped.
    [Show full text]
  • A Gene Regulatory Network Armature for T Lymphocyte Specification
    Supporting Information Georgescu et al. 10.1073/pnas.0806501105 SI Text orientation in the multidimensional space, while the relative magnitude of gene expression variation is still visible on the 2D Computational Methods pls projection. All of the 2D visualizations included use the Partial Least Squares (PLS) Analysis of Normal Developmental Gene above transformations. Expression Change. PLS regression analysis was performed to find The lengths of the DN-stage vectors in the pls principal axis a hyper plane of reduced dimensionality relating the expression space indicate the extent to which these axes are explanatory of variation of the studied genes to the developmental stages DN1, the corresponding DN state. Because in the full multidimen- DN2, DN3A, DN3B, and DN4. PLS begins by characterizing the sional space this length is the same for all five DN stages, the five developmental stages DN1–DN4 as orthogonal axes in length of these vectors in the 2D projection shows the relative five-dimensional space. Each of the assayed genes is represented extent to which the DN stages are represented in the projection. as a point in this space, such that the gene’s coordinate along Long vectors indicate DN stages well represented in the projec- each axis corresponds to its expression level at the corresponding tion. In the multidimensional space, the cosine of the angle developmental stage. Genes with similar expression changes between the vectors corresponding to two variables (genes during development will tend to form clusters in this space, and/or DN stages) gives the correlation between the two vari- whereas genes with distinctly different expression profiles will ables.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • 1 Unique Protein Interaction Networks Define the Chromatin Remodeling
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.27.428018; this version posted January 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Unique Protein Interaction Networks Define The Chromatin Remodeling Module of The NuRD Complex Mehdi Sharifi Tabar1,2, Caroline Giardina1, Yue Julie Feng1, Habib Francis1, Hakimeh Moghaddas Sani3, Jason K. K. Low3, Joel P. Mackay3, Charles G. Bailey1,2,4, John E.J. Rasko1,2,5,6 1Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia 2Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, 2006, Australia 3School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia 4Cancer and Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia 5Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia 6Corresponding author 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.27.428018; this version posted January 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The combination of four proteins and their paralogues including MBD2/3, GATAD2A/B, CDK2AP1, and CHD3/4/5, which we refer to as the MGCC module, form the chromatin remodeling module of the Nucleosome Remodeling and Deacetylase (NuRD) complex, a gene repressor complex. Specific paralogues of the MGCC subunits such as MBD2 and CHD4 are amongst the key repressors of adult-stage fetal globin and provide important targets for molecular therapies in beta (β)-thalassemia.
    [Show full text]
  • Snail/PRMT5/Nurd Complex Contributes to DNA Hypermethylation in Cervical Cancer by TET1 Inhibition
    Cell Death & Differentiation (2021) 28:2818–2836 https://doi.org/10.1038/s41418-021-00786-z ARTICLE Snail/PRMT5/NuRD complex contributes to DNA hypermethylation in cervical cancer by TET1 inhibition 1,2 2 1 3 4 4 1 Jie Gao ● Ruiqiong Liu ● Dandan Feng ● Wei Huang ● Miaomiao Huo ● Jingyao Zhang ● Shuai Leng ● 1 3 3 3 3 4 1,4 Yang Yang ● Tianshu Yang ● Xin Yin ● Xu Teng ● Hefen Yu ● Baowen Yuan ● Yan Wang Received: 15 September 2020 / Revised: 8 April 2021 / Accepted: 15 April 2021 / Published online: 5 May 2021 © The Author(s) 2021. This article is published with open access Abstract The biological function of PRMT5 remains poorly understood in cervical cancer metastasis. Here, we report that PRMT5 physically associates with the transcription factor Snail and the NuRD(MTA1) complex to form a transcriptional-repressive complex that catalyzes the symmetrical histone dimethylation and deacetylation. This study shows that the Snail/PRMT5/ NuRD(MTA1) complex targets genes, such as TET1 and E-cadherin, which are critical for epithelial-mesenchymal transition (EMT). This complex also affects the conversion of 5mC to 5hmC. This study demonstrates that the Snail/ PRMT5/NuRD(MTA1) complex promotes the invasion and metastasis of cervical cancer in vitro and in vivo. This study 1234567890();,: 1234567890();,: also shows that PRMT5 expression is upregulated in cervical cancer and various human cancers, and the PRMT5 inhibitor EPZ015666 suppresses EMT and the invasion potential of cervical cancer cells by disinhibiting the expression of TET1 and increasing 5hmC, suggesting that PRMT5 is a potential target for cancer therapy. Introduction These authors contributed equally: Jie Gao, Ruiqiong Liu, Protein arginine methyltransferase 5 (PRMT5) is a type II Dandan Feng protein arginine methyltransferase (PRMT) that has been Edited by R Johnstone reported to catalyze the symmetrical dimethylation of argi- nine [1].
    [Show full text]
  • Supporting Information
    Supporting Information Ji et al. 10.1073/pnas.1613195113 SI Materials and Methods We acquired the Haploinsufficiency Scores (32) and the Ge- Identification of EGs. We identified 3,023 protein-coding EGs nome-Wide Haploinsufficiency Scores (33) for genome-wide annotated with 50 Mouse Phenotype (MP) terms, including prediction of the probability of haploinsufficiency. For each prenatal, perinatal, and postnatal lethal phenotypes from the prediction model, the raw scores were ranked and converted to MGI (23) (Table S8). The MGI database was also used to extract percentiles. The histograms and estimated density curves were 4,995 protein-coding NEGs with nonlethal phenotypes in the plotted using ggplot2 (geom_histogram and geom_line) in R. mouse. Phenotype data from the IMPC database portal (24) Burden Analysis of Mutations in EGs in ASD Families. expanded the lethal gene list with the addition of 252 lethal The Simons genes and 101 genes with subviable phenotypes. We further Simplex Collection contains genetic and phenotypic information supplemented the nonlethal gene list with 701 genes with viable from 2,600 ASD families, each of which has one child affected phenotypes from the IMPC. In the case of discrepancy in the with ASD and unaffected parents and siblings (34). ASD pro- bands were defined by clinical consensus from the Autism Di- reported lethality status between the MGI and the IMPC, we – deferred to the phenotypes reported by the IMPC, because these agnostic Interview Revised (57) and the Autism Diagnostic mouse lines were generated on a defined C57BL/6N background Observation Schedule (58). Multiple individual phenotypic measures, including the SRS (35) and IQ, were available (8, 26).
    [Show full text]
  • MTA2 Triggered R-Loop Trans-Regulates BDH1-Mediated Β-Hydroxybutyrylation and Potentiates Propagation of Hepatocellular Carcinoma Stem Cells
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans LETTER OPEN MTA2 triggered R-loop trans-regulates BDH1-mediated β-hydroxybutyrylation and potentiates propagation of hepatocellular carcinoma stem cells Signal Transduction and Targeted Therapy (2021) 6:135; https://doi.org/10.1038/s41392-021-00464-z Dear editor, NuRD complex was different in the CD133+ and CD133− HCC MTA2 is associated with invasively malignant phenotypes in cells, and its function was inhibited in the former. Hence, the many types of cancers,1 but the molecular mechanism remains MTA2-HDAC2-CHD4 complex is closely related to HCC stemness. unclear. Studies on the role of MTA2 mostly concentrated on it as (Supplementary Fig. S2) We performed chromatin immunopre- a component of the NuRD complex, which functions via the NuRD cipitation (ChIP) assay on MTA2 in the two groups of cells to complex to inhibit the transcription of downstream target genes.2 determine how the complex functions and what target genes Whether MTA2 could directly exert transcriptional regulation are regulated. In the CD133+ group, we found a large amount of independent of the transcription factor remains unclear and is the RNA mixed in the DNA fragments acquired by MTA2 antibody focus of the present study. ChIP. After treatment with a variety of ribonucleases (RNases), The immunohistochemical staining image of MTA2 provided by the RNA content was sensitive to RNaseH, which could degrade the Human Protein Atlas revealed that MTA2 was highly expressed the RNA strand in RNA-DNA hybrids. RNA that occurs in the 1234567890();,: in hepatocellular carcinoma (HCC) cells and localized in the nuclei.
    [Show full text]
  • 8791.Full.Pdf
    Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis Da-Qiang Lia, Suresh B. Pakalaa, Sirigiri Divijendra Natha Reddya, Kazufumi Ohshiroa, Jun-Xiang Zhanga, Lei Wangb, Yanping Zhangc, Ignacio Moreno de Alboránd, M. Radhakrishna Pillaie, Jeyanthy Eswarana,f, and Rakesh Kumara,e,f,1 aDepartment of Biochemistry and Molecular Biology and fMcCormick Genomic and Proteomic Center, The George Washington University Medical Center, Washington, DC 20037; bDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; cRadiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514; dDepartment of Immunology and Oncology, National Center for Biotechnology, 28049 Madrid, Spain; and eRajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India Edited* by George R. Stark, Lerner Research Institute NE2, Cleveland, OH, and approved April 8, 2011 (received for review December 8, 2010) Although metastasis-associated protein 1 (MTA1), a componentofthe been reported to associate with proteins other than Mdm2 and to nucleosome remodeling and histone deacetylation complex, is widely have p53-independent tumor-suppressive activities (11). For ex- up-regulated in human cancers and correlates with tumor metastasis, ample, mice null for ARF, p53, and Mdm2 experienced tumor de- its regulatory mechanism and related signaling pathways remain velopment at a higher frequency than did mice lacking both p53 and unknown. Here, we report a previously unrecognized bidirectional Mdm2 or p53 alone (12). These studies indicate that the tumor- autoregulatory loop between MTA1 and tumor suppressor alter- suppressive functions of ARF are not elicited entirely through the native reading frame (ARF).
    [Show full text]
  • BTB Domain Dimerization: Development of a Protein-Protein Interaction Assay
    BTB domain dimerization: Development of a protein-protein interaction assay By Qingniao (Carol) Wang A thesis submitted in conformity with the requirement for the degree of Master of Science Graduate Department of Biochemistry University of Toronto © Copyright by Qingniao (Carol) Wang (2009) BTB domain dimerization: Development of a protein-protein interaction assay Qingniao (Carol) Wang Masters of Science 2009 Department of Biochemistry University of Toronto Abstract In the human genome, 43 BTB (Bric-à-brac, Tramtrack, and Broad Complex) containing BTB-Zinc Finger proteins have been identified, many of which are transcription factors involved in cancer and development. These BTB domains have been shown to form homodimers and heterodimers which raise DNA binding affinity and specificity for transcription factors. This project was to develop an efficient assay to systematically identify interactions between BTB domains. It combined a co-expression system, fluorescent protein tagging and Ni-NTA plate retention. It was concluded that fourteen analyzed BTB domains formed homodimers, but only certain BTB pairs formed heterodimers, such as BCL6 with Miz1 and Miz1 with RP58. To further understand the specificity of BTB domain interactions, more structural and sequence information is still needed. In conclusion, this assay provided a comprehensive detection method for BTB domain interaction mapping. The information generated provides candidates for further functional and structural studies. ii Acknowledgements This research project would not have been possible without the support of many people. I wish to express my gratitude to my supervisor, Dr. Gil Privé who offered invaluable guidance, assistance and patience. Special thanks are also due to the members of my supervisory committee, Dr.
    [Show full text]
  • Preleukemic Mutations in Human Acute Myeloid Leukemia Affect Epigenetic Regulators and Persist in Remission
    Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission M. Ryan Corces-Zimmermana, Wan-Jen Honga,b, Irving L. Weissmana,1, Bruno C. Medeirosb, and Ravindra Majetia,b,1 aProgram in Cancer Biology, Ludwig Center, Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, and bDepartment of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Irving L. Weissman, January 9, 2014 (sent for review December 23, 2013) Cancer is widely characterized by the sequential acquisition of (BCR-ABL) translocation occurs in HSCs, causing chronic disease, genetic lesions in a single lineage of cells. Our previous studies have but subsequent progression to blast crisis involves mutation evolu- shown that, in acute myeloid leukemia (AML), mutation acquisition tion at the level of granulocyte–macrophage progenitors (19, 20). occurs in functionally normal hematopoietic stem cells (HSCs). These More recently, a study of elderly women with clonal hematopoiesis preleukemic HSCs harbor some, but not all, of the mutations found indicated by X-inactivation skewing showed that these individuals in the leukemic cells. We report here the identification of patterns of harbored somatic ten eleven translocation methylcytosine dioxyge- TET2 mutation acquisition in human AML. Our findings support a model in nase 2 ( ) mutations, occurring at the level of the HSC, that which mutations in “landscaping” genes, involved in global chroma- may predispose them to hematologic malignancies (21). Recent work from our laboratory has provided direct evidence tin changes such as DNA methylation, histone modification, and supporting this model by demonstrating that, in a small subset of chromatin looping, occur early in the evolution of AML, whereas “ ” AML patients harboring mutations in the FMS-related tyrosine mutations in proliferative genes occur late.
    [Show full text]
  • LINE-1 Silencing by Retinoblastoma Proteins Is Effected Through the Nucleosomal and Remodeling Deacetylase Multiprotein Complex Diego E
    Montoya-Durango et al. BMC Cancer (2016) 16:38 DOI 10.1186/s12885-016-2068-9 RESEARCHARTICLE Open Access LINE-1 silencing by retinoblastoma proteins is effected through the nucleosomal and remodeling deacetylase multiprotein complex Diego E. Montoya-Durango1, Kenneth A. Ramos1, Pasano Bojang2, Lorell Ruiz1, Irma N. Ramos3 and Kenneth S. Ramos2* Abstract Background: Long Interspersed Nuclear Element-1 (L1) is an oncogenic mammalian retroelement silenced early in development via tightly controlled epigenetic mechanisms. We have previously shown that the regulatory region of human and murine L1s interact with retinoblastoma (RB) proteins to effect retroelement silencing. The present studies were conducted to identify the corepressor complex responsible for RB-mediated silencing of L1. Methods: Chromatin immunoprecipitation and silencing RNA technology were used to identify the repressor complex that silences L1 in human and murine cells. Results: Components of the Nucleosomal and Remodeling Deacetylase (NuRD) multiprotein complex specifically enriched the L1 5′-untranslated DNA sequence in human and murine cells. Genetic ablation of RB proteins in murine cells destabilized interactions within the NuRD macromolecular complex and mediated nuclear rearrangement of Mi2-β, an ATP-dependent helicase subunit with nucleosome remodeling activity. Depletion of Mi2-β, RbAP46 and HDAC2 reduced the repressor activity of the NuRD complex and reactivated a synthetic L1 reporter in human cells. Epigenetic reactivation of L1 in RB-null cells by DNA damage was markedly enhanced compared to wild type cells. Conclusions: RB proteins stabilize interactions of the NuRD corepressor complex within the L1 promoter to effect L1 silencing. L1 retroelements may serve as a scaffold on which RB builds heterochromatic regions that regulate chromatin function.
    [Show full text]
  • Targeting Human Retinoblastoma Binding Protein 4 (RBBP4) and 7 (RBBP7)
    bioRxiv preprint doi: https://doi.org/10.1101/303537; this version posted April 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Targeting Human Retinoblastoma Binding Protein 4 (RBBP4) and 7 (RBBP7) Megha Abbey1, Viacheslav Trush1, Elisa Gibson1, and Masoud Vedadi1,2* 1Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada 2Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada To whom correspondence should be addressed: Masoud Vedadi; Tel.: 416-432-1980; E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/303537; this version posted April 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract RBBP4 and RBBP7 (RBBP4/7) are highly homologous nuclear WD40 motif containing proteins widely implicated in various cancers and are valuable drug targets. They interact with multiple proteins within diverse complexes such as NuRD and PRC2, as well as histone H3 and H4 through two distinct binding sites. FOG-1, PHF6 and histone H3 bind to the top of the donut shape seven-bladed β-propeller fold, while SUZ12, MTA1 and histone H4 bind to a pocket on the side of the WD40 repeats. Here, we briefly review these six interactions and present binding assays optimized for medium to high throughput screening. These assays enable screening of RBBP4/7 toward the discovery of novel cancer therapeutics.
    [Show full text]