Curds Recipe

Total Page:16

File Type:pdf, Size:1020Kb

Curds Recipe Basic Curds for Fresh Cheeses The first bit of magic in making cheese is turning milk into curds and whey. Once you have these precious curds, you can make dozens of different kinds of fresh cheeses. Though there are many steps and some things that must be done exactly, there is still plenty or room for experimentation and creativity. Don’t be afraid to play around some after you make a few batches and get the hang of it. And don’t get stuck on just cow milk. You can use this recipe for goat or sheep milks too or blend different milks together. Prep Time: Equipment: 30-45 minutes of work Double boiler 2-10 hours of waiting Skimmer Ingredients: Thermometer 2 gallons milk (raw or pasteurized) Scale ½ pint buttermilk Long thin knife ½ tsp single strength liquid rennet or ¼ tsp of double strength Butter muslin 2 tbs – ½ cup mother culture or Spatula or large spoon 1 packet of direct set culture Colander 16-24 grams non-iodized salt Cheese mold (optional) Spices/flavorings (optional) Ripening: It is important that you lower the PH of your milk before coagulating with rennet. Raw milk will ripen and become more acidic quite nicely on its own. Pasteurized milk needs some help. It is possible to use lemon juice, citric acid powder or even yogurt, but I recommend using cultured buttermilk. 1. Add milk to double-boiler and heat until 85˚ F. 2. If using direct-set culture, follow instructions on packet for amounts and sprinkle on surface of milk. Allow to rehydrate for 2 minutes and then stir with skimmer using an up and down motion until fully incorporated. If using re-culturable culture (mother), add 2 tbs to ½ cup and stir. 3. Add buttermilk and stir. 4. For best results, turn off heat, cover and allow to sit for 4 hours. If you are in a hurry, it is ok to continue to the next step immediately. © 2014 by Cure Cooking, LLC (402) 999-1075 • [email protected] • www.curecooking.com 3661 Davenport St. Omaha, NE 68131 Coagulation: A fun word to say and a fairly easy step to do with a bit of patience. See “Troubleshooting” at the end of recipe if you have any problems. 1. In double-boiler, slowly re-heat milk until 85˚ F and turn off heat. 2. Measure ½ tsp of single strength liquid rennet or ¼ tsp of double strength and dilute in small container with 20 times its volume of non-chlorinated water. 3. Stir milk for 10-15 seconds with skimmer using an up and down motion. Hold skimmer above pot and pour the diluted rennet through it. Return skimmer to pot and use up and down motion to stir until fully incorporated. Try not to stir for more than 30 seconds. 4. Cover and allow to sit undisturbed until coagulated. Depending on conditions this may take 30-45 minutes. If you are getting worried, look for the following to tell if the rennet is working: a thin clear layer of whey on the surface or a very small gap between the curd and the edge of the pot. When you think it may be ready, test for a clean break by inserting a long thin knife and gently pulling to the side (think of testing a pumpkin pie). Cooking: If everything has gone to plan, you should now be looking at one giant curd. This is great for yogurt, but bad for most cheeses. To solve this problem and end up with lots of smaller, denser and drier curds, it is necessary to cut the curd into pieces and gently heat until they shrink and start to expel the whey. 1. Cut the curd with a long thin knife. Holding the knife vertically, draw across pot and cut in one direction and then in the perpendicular direction. Imagine making a chessboard with 1-inch squares. Then while holding the knife at an angle, gently cut the curds below the surface until the final result is 1-inch “cube-like” objects. 2. On medium heat, gently and slowly heat the curds until about 115˚ F. (There is room to experiment here, so don’t be afraid to try 100˚ F or 130˚ F.) Hold at this temperature for 10-15 minutes. If the curds shrink and begin to sink just below the surface, you are on the right track. 3. Remove from heat. Draining/Milling/Salting You are getting awfully close to cheese. It is best to still remove more whey from the curds though. Draining and milling and salting will help dry and preserve the curds and add flavor. There are other ways to add the crucial salt to cheese. Brining and salt rubs also work, but it is best to stick with this direct salting method for now. Any basic cheese making book will guide you in other methods. 1. Dampen a piece of butter muslin. Wring it out and line a colander that is resting in a large bowl. 2. Using the skimmer, gently ladle the curds into the colander. 3. Allow to drain until desired dryness. Think ahead to what kind cheese you want end up with. Ricotta-style cheese will still be rather moist but if want to just use your hands to shape the curds into patties a drier curd is best. © 2014 by Cure Cooking, LLC (402) 999-1075 • [email protected] • www.curecooking.com 3661 Davenport St. Omaha, NE 68131 4. Pour the drained curds into a large bowl. Using a spoon or spatula or your hands, gently break the curds into a dry cottage cheese consistency. 5. Measure and add non-iodized salt. Fresh cheeses generally have about 2% salt by weight. You may weigh the curds and do the math if you wish or use the following general guideline: add 8-12 grams of salt to the amount of curds made from 1 gallon of milk. Start with the 8 grams per gallon and taste to see if you would like more salt. 6. Sprinkle the salt and any other herbs and spices on top of the curds. Using spoon or spatula or your hands, gently mix, aka mill, the curds (think of folding a batter and not beating eggs). Molding/Aging Now the options are almost endless. The curds can simply be enjoyed with crackers right away or drained in a cheese mold for a few days or can even be blended into a creamy ricotta-style cheese and stuffed into manicotti. Be creative. Be delicious. 1. If you just want a ricotta-style cheese, you may blend the curds or simply leave them as they are and store in an airtight container in the refrigerator for 2-3 weeks. 2. If you want to make many small shaped cheeses, you may use your hands and the curds into patties. Consider coating the patties with herbs and spices. Allow them to drain and flip every day. These can be aged in the refrigerator or at room temperature with careful attention. These small cheeses will last for 2-3 weeks if kept moist or many months if aged and dried carefully. 3. If you want to drain the curds in a cheese mold, do just that. While the curds are still a bit warm, fill your cheese mold with the curds. (If your curds are too cool, don’t be afraid to microwave in 15 seconds bursts until they feel warm to the touch.) Depending on the style of the mold, you may want to line the mold with a small piece of butter muslin first. Don’t worry about buying professional molds. They are great, but you may also drill some holes in a section of pvc piping or use some drainage caps or permanent coffee filters. Look around the house and be creative. © 2014 by Cure Cooking, LLC (402) 999-1075 • [email protected] • www.curecooking.com 3661 Davenport St. Omaha, NE 68131 Troubleshooting Milk never set into a firm curd: There can be a few culprits. The milk may not have ripened, so the PH was too high for the rennet to work well. Let it sit longer next time and make sure the buttermilk was cultured (aka “live”) buttermilk. The temperature of the milk may also have been too high or too low. Did you remember to dilute the rennet? Did you stir long enough to fully mix in the rennet? Don’t throw out the unset curds though. You can still make paneer out of it. Just heat it up to simmering and add some vinegar or lemon juice (see the paneer recipe). Curds are floating instead of sinking: If the curds are very soft, they may not sink very much. If they are actually floating instead of sinking, it means you most likely have some unwanted yeast. As a beginning cheese maker, it is best to call this a learning experience and scrap this batch and start over. Try not to bake the same day you make cheese, so yeast is not floating in the air. Curds are not sticking together in mold: Cold curds don’t do well in molds without pressure. Since you are not pressing your curds, you really need to make sure they are still warm when you first fill the mold. Cheese is getting moldy: Mold can be a good thing or a bad thing. As a new cheese maker it is really best to avoid mold until you get the hang of things and know what to look for. If your fresh cheeses are getting mold on them as you age them, the most likely problem is too much moisture.
Recommended publications
  • Role of Microbes in Dairy Industry
    Mini review Nutri Food Sci Int J Volume 3 Issue 3 - September 2017 Copyright © All rights are reserved by Anil Kumar DOI: 10.19080/NFSIJ.2017.03.555612 Role of Microbes in Dairy Industry Anil Kumar* and Nikita Chordia School of Biotechnology, Devi Ahilya University, India Submission: March 3, 2017; Published: September 22, 2017 *Corresponding author: Anil Kumar, School of Biotechnology, Devi Ahilya University, Khandwa Rd., Indore-452001,India, Email: Abstract Milk represents a good source of nutrients and liquid for hydration and is known to humanity thousands of years ago. The fermentation of milk provides a simple way to increase its shelf-life while improving its safety. Different strains of bacteria and fungi are used for fermentation of are used for coagulation of milk and thereafter, these can be processed for diverse products. milk in order to produce a wide variety of dairy products viz. curd, yogurt, cheese, kefir and kumis. The main bacteria are lactic acid bacteria that Introduction Since ancient times, dairy products have been part of human diet. These serve as good source of calcium, vitamin D, proteins coagulated under the influence of certain microorganisms. By producing bacteria. and other essential nutrients. These products also provide luck it was having harmless, acidifying type and non toxin- phosphorus, potassium, magnesium, and various vitamins viz. vitamin A (retinols), vitamin B12 (cyanocobalamin), and have been developed in all parts of the world each with its own Various types of fermented milks and derived products characteristic history. Their nature depends very much on using different microbial strains. Microbes ferment the the type of milk used, on the pre-treatment of the milk, on the riboflavin.
    [Show full text]
  • Suggested Protein Supplements
    Suggested Protein Supplements Choose supplements that provide 100-200 calories, 20-30 grams of protein, and less than 5 grams of sugar per standard serving. A good supplement will provide at least 15 grams of protein per 100 calories. Supplement Calories Protein Sugar Protein Other Where to Purchase (serving size) (grams) (grams) Source Ready to Drink (RTD) Elevation 160 30 1 Milk GF Aldi, online High Performance Kosher Protein Shake (11 fl oz) Ensure Max 150 30 1 Milk GF/LF CVS, Rite Aid, Shopper’s, Target, (11 fl oz) Kosher Walgreen’s, Walmart, Weis, online Equate 160 30 1 Milk GF Walmart, online High Performance Kosher (11 fl oz) Fairlife 150 30 2 Milk GF/LF BJ’s, Sam’s Club, online Nutrition Plan Kosher (11.5 fl oz) GNC Lean Shake 25 170 25 2 Milk LF GNC, online (14 fl oz) Orgain Organic Protein 150 26 1 Milk GF Costco, Rite Aid, Safeway, Nutritional Kosher Target, Vitamin Shoppe, (14 fl oz) Walgreen’s, Whole Foods, online Orgain Organic Protein 150 21 0 Pea GF/LF Costco, Rite Aid, Safeway, Vegan Kosher Target, Vitamin Shoppe, (14 fl oz) Walgreen’s, Whole Foods, online Premier Protein 160 30 1 Milk GF BJ’s, Costco, CVS, Sam’s Club, (11 fl oz) Kosher Food Lion, Giant, Harris Teeter, Rite Aid, Safeway, Target, Walgreen’s, Walmart, 7 Eleven, online Pure Protein Milk GF Costco, Sam’s Club, BJ’s, Giant, Shake (11 fl oz can) 150-170 35 1 Safeway, Vitamin Shoppe, Complete Shake (11 fl oz) 140 30 <1 Walmart, online Quest 160 30 1 Milk GF CVS, Giant, Target, Vitamin (11 fl oz) Kosher Shoppe, Walmart Unjury 110 20 2 Milk Kosher Unjury.com,
    [Show full text]
  • Food and Drug Administration, HHS § 133.136
    Food and Drug Administration, HHS § 133.136 percent by weight of the cream cheese are not pasteurized, the cheese is cured and in no case less than 27 percent of at a temperature of not less than 35 °F the finished food. The moisture and fat for at least 60 days. contents will be determined by the (2) If pasteurized dairy ingredients methods described in § 133.5, except are used, the phenol equivalent value that the method for determination of of 0.25 gram of washed curd cheese is fat content is not applicable when the not more than 3 micrograms as deter- added food contains fat. mined by the method described in (b) Optional ingredients. The following § 133.5. safe and suitable optional ingredients (3) One or more of the dairy ingredi- may be used: ents specified in paragraph (b)(1) of (1) Foods. Properly prepared fresh, this section may be warmed, treated cooked, canned, or dried fruits or vege- with hydrogen peroxide/catalase, and is tables; cooked or canned meats, rel- subjected to the action of a lactic acid- ishes, pickles, or other suitable foods. producing bacterial culture. One or (2) Other optional ingredients. (i) Sta- more of the clotting enzymes specified bilizers, in a total amount not to ex- in paragraph (b)(2) of this section is ceed 0.8 percent, with or without the added to set the dairy ingredients to a addition of dioctyl sodium sulfo- semisolid mass. The mass is so cut, succinate in a maximum amount of 0.5 stirred, and heated with continued stir- percent of the weight of the sta- ring, as to promote and regulate the bilizer(s) used.
    [Show full text]
  • 2018 Bottle Bill Expansion: Frequently Asked Questions
    2018 Bottle Bill Expansion Frequently Asked Questions Beginning January 1, 2018, all beverages except distilled liquor, wine, dairy or plant- based milks, infant formula, and meal replacement beverages will have an Oregon refund value of 10 cents. The following are frequently asked questions about this expansion: Q: The list above describes the beverages that will not have an Oregon refund value. What new beverages will have a refund value? A: There are too many beverages on the market to list them all, but some common types of beverages that will have a refund value beginning on January 1, 2018 include juice, hard cider, energy and sports drinks, tea, coffee (including frappuccinos and other coffee drinks that include milk), kombucha, ready-to-use mixers (such as margarita mix), smoothies, protein shakes (unless they are marketed as a meal replacement), non- alcoholic wine, nutritional supplements (like Muscle Milk), drinking vinegar, marijuana beverages, and coconut water. Q: What are some specific products that will not have an Oregon refund value? A: In addition to distilled liquor, wine, dairy or plant-based milks, infant formula, and meal replacement beverages, here are some products that will not be included in the expansion: kefir, buttermilk, flavored milks (such as chocolate), lactose free milk, vinegar (unless it is marketed as a drinking vinegar), flavoring, condiments (such as soy sauce and sriracha), concentrates (including concentrated juices and concentrated coffee), mead (which is a wine), hard cider over 8.5% alcohol by volume (which is considered a wine), syrup, and coconut milk. Q: Will a beverage containing distilled liquor be exempt even if it contains other beverages that have a refund value? A: Any beverage containing distilled liquor will be exempt even if the beverage contains other ingredients.
    [Show full text]
  • Heirloom Buttermilk Starter Instructions
    INSTRUCTIONS FOR MAKING BUTTERMILK 1 Put 1 quart pasteurized milk into a glass or plastic container. 2 Add ¼ cup buttermilk from the previous batch. Mix thoroughly. To make larger batches, use 1 tablespoon buttermilk per cup of milk, making up to ½ gallon per container. 3 Cover with a towel or coffee filter, secured with a rubber band, or put a lid on the container. 4 Place in a warm spot, 70°-77°F, to culture for 12-18 hours. 5 Check every few hours by tilting the jar gently. If the buttermilk moves away from the side of the jar in one mass, CULTURED BUTTERMILK instead of running up the side, it is finished culturing. STARTER 6 Once it has set, cover with a tight lid and refrigerate for at least 6 hours. BEFORE YOU GET STARTED 7 The cultured buttermilk can now be eaten. Reserve some for culturing the next batch. • This box contains 2 packets of freeze-dried buttermilk starter. • Follow Instructions for Making Buttermilk (above) to make a Please store one packet in the freezer as backup. new batch at least every 7 days to keep your cultures strong. • If at any point you have questions or concerns about Always use the freshest batch of buttermilk as starter. your culturing process, contact Customer Support before • If you wish to use raw milk to make buttermilk, please visit discarding anything. our website for detailed instructions. • Avoid using ultra-pasteurized or UHT milk • Avoid aluminum utensils when making buttermilk. Stainless steel is acceptable. • Fermented foods often have a sour but clean aroma and flavor.
    [Show full text]
  • Let's Make Butter
    F Let’s MAKE BUTTER FAMILY Equipment • 1 carton of double or single cream (250ml) • 1 jam jar with a lid or a plastic container for younger children • 1 glass • 1 plate • A strong pair of arms Background A mixture is made up of two or more substances which are jumbled together. For example for Information breakfast you may have a bowl of cereal and milk, this is a mixture. Cream is also a mixture. Let’s see how we can separate cream into two parts, a solid and a liquid. What to do 1. Take the cream out of the fridge. Do you notice that it feels cold? 2. Leave the cream on the table for about an hour. It shouldn’t feel cold now, unlike when it came out of the fridge. 3. Pour the cream into the jar until it is about half full. 4. Screw the lid on tight. 5. Take the jar and start shaking it up and down. Play some music and have fun dancing as you shake. Stop and look at the cream in your jar every few minutes. What do you notice? What After about 15 minutes you’ll feel something solid in the jar. Keep going until you see a solid lump. happens? Take the lid off the jam jar. What do you see? The solid yellow lump is butter and the whitish liquid is buttermilk. Why did this Cream is a mixture. It is made of tiny drops of water mixed with fat droplets and protein. Shaking happen? the cream in the jar makes the fat droplets stick together, forming butter.
    [Show full text]
  • CHEESE and WHEY: the Outcome of Milk Curdling
    foods Editorial CHEESE and WHEY: The Outcome of Milk Curdling Golfo Moatsou * and Ekaterini Moschopoulou Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Iera Odos 75, 11855 Athens, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-210-529-4630 The present Special Issue is dedicated to both products of the cheesemaking process, that is cheese and whey. Cheese is an excellent and complex food matrix that preserves in concentrated form valuable milk constituents, such as proteins, minerals, vitamins, and biofunctional lipids. The formation of cheese mass requires the removal of whey, i.e., water and soluble milk substances—proteins, minerals, lactose, and vitamins—. According to Fox and McSweeney [1], cheese is the most diverse group of dairy products manufactured from a few kinds of milk by means of a protocol that is more or less common in respect to the first 24 h of manufacture. They suggest that cheese is the most interesting and challenging dairy product due to an inherent instability that results from a series of biochemical changes. Whey is the valuable byproduct derived from the cheesemaking process. Lactose and whey proteins are the main compounds of whey and the main reasons for its valorization, through the production of whey cheeses, functional/nutritional whey proteins concentrate, bioactive peptides, and oligosaccharides [2,3]. In the present article collection, two publications for the Parmigiano Reggiano cheese are included. Considering the demanding cheese making conditions and the long-term ripening of this cheese variety, relevant studies are of particular importance. Franceschi et al. [4] designed a two-year study in various cheese factories to assess the performance Citation: Moatsou, G.; of milk with high somatic cell count (SCC), i.e., from 400,000 to 1,000,000, when it is used Moschopoulou, E.
    [Show full text]
  • Horchata Drink Mix Whey Protein for Ethnic Foods
    2017 – Downloaded from hilmaringredients.com Horchata Drink Mix Whey protein for Ethnic Foods As the Hispanic population expands, related taste trends follow. Horchata is a traditional Latin beverage with its roots in Mexican, Central American and Spanish cultures. Horchata is now becoming popular in the US as a beverage as well as a flavor in various foods. Examples of Horchata flavoring can be found in ice cream, franchise coffee beverages, commercial energy drinks and drink mixes. While these products commonly contain dairy, most have marginal protein content. This concept formulation for a Horchata dry mix has a simple, clean ingredient list. It is fortified with Skim Milk Powder, Whey Protein Isolate and Whey Protein Hydrolysate. Together, they supply protein nutrition across a spectrum of digestion rates and deliver the protein equivalency of one cup of milk. Hilmar™ LH-SMP Low Heat Skim Milk Powder is made from fresh, pasteurized cow’s milk. It has a sweet, clean flavor. Hilmar™ 8360 Instantized Whey Protein Hydrolysate is a unique instantized 80% whey protein hydrolysate that is highly dispersible. It has been enzymatically hydrolyzed to produce a mixture of peptides and free amino acids for enhanced nutritional and functional benefits. Hilmar™ 9010 Instantized Whey Protein Isolate is produced with a special agglomeration and surface treatment to enhance its dispersibility and quick hydration into solution. Clean flavor, acid and heat stability and superior protein nutrition make Hilmar™ 9010 an outstanding choice for dry mix beverages. Hilmar whey proteins are complete proteins providing the essential amino acids in an optimum blend for human consumption. All HilmarTM whey proteins have a PER of 3.2, a “perfect” PDCAAS of 1.00 and have a low glycemic load at 2 per 100 grams for concentrates and <1 for whey protein isolates.
    [Show full text]
  • DEMONSTRATION Instant Cheese Bioplastic WGBH EDUCATIONAL FOUNDATION WGBH GRATEFULLY ACKNOWLEDGES the CONTRIBUTION of the MATERIALS RESEARCH SOCIETY
    DEMONSTRATION Instant Cheese Bioplastic WGBH EDUCATIONAL FOUNDATION WGBH GRATEFULLY ACKNOWLEDGES THE CONTRIBUTION OF THE MATERIALS RESEARCH SOCIETY. 2010 54 © MAKING STUFF CLEANER Demonstration ach year, we extract some 30 trillion tons of raw materials from Overview the Earth. We turn iron ore into steel cars, petroleum products intoE plastics, and metals into batteries. What happens to all those raw TITLE materials when the useful life of our stuff ends? Many end up in landfills Instant Cheese Bioplastic or at the bottom of rivers, lakes, and oceans. SHOW NOVA’s Making Stuff: Cleaner explores the rapidly developing science Making Stuff: Cleaner and business of clean energy and clean materials. The show follows innovative materials scientists as they work to invent cleaner materials DESCRIPTION to help solve environmental problems created by the production and In this two-part demonstration, use of automobiles, plastics, and batteries. These new materials— visitors will learn about bioplastic and see a simple bioplastic made including plastics made from sugar instead of petroleum and tires made by curdling milk with vinegar in a from orange peel oil—could provide the energy and materials we need process similar to cheese making. without polluting the Earth. OBJECTIVE Materials scientists are asking: Visitors will learn about bioplastic, • What if we lived in a zero-waste world where every product could be a material made of plant or animal recycled, reused, or composted? matter that is cleaner because it breaks down more easily in the • How can we replace dirty materials with cleaner biomaterials? environment than petroleum- based synthetic plastics. Science Background OTHER KEY TALKING POINTS Materials scientists are developing The word plastic has many meanings.
    [Show full text]
  • Doug Taylor Collection *** Subject to Errors & Omissions LOT# Dairy Name Location State Pyro/Embossed Size Type Condition Comments a G
    Doug Taylor Collection *** Subject to Errors & Omissions LOT# Dairy Name Location State Pyro/Embossed Size Type Condition Comments A G. Smalley Boston MA r quart Smalley/tin top very good handle missing A. G. Smalley & Co Boston MA re half gallon tin top excellent Has tin A. G. Smalley & Co Boston MA re half gallon very good no tin 1 A. G. Smalley & Co Boston MA re pint tin top very good+ Has tin A. G. Smalley & Co Boston MA re pint very good no tin A. G. Smalley & Co Boston MA re quart tin top No tin; has grooves for tin A. G. Smalley & Co Boston MA re quart very good no tin A. G. Smalley & Co Boston MA re quart No tin; has grooves for tin McLean Hospital Belmont MA re quart squat very good+ institutional bottle D. Whiting & Sons Boston MA re pint crown top very good+ 1914 Ware Dairy Belmont MA sp orange quart excellent 2 Ware Belmont MA se quart very good location not on bottle White Bros. Atlantic (Quincy) MA re quart cream top very good+ White Bros. Atlantic (Quincy) MA re quart cream top very good+ one body belt White Bros. Atlantic (Quincy) MA re half pint excellent some scratches; two body belts White Bros. Atlantic (Quincy) MA re quart cream top very good+ one body belt MSC Dept. of Dairy Industry Amherst MA re quart college excellent U Mass; Dept. of Dairy Industry Amherst MA re 1/2 pint college excellent Colombo & Sons Yogurt Andover MA re quart wide mouth very good heavily stained 3 Marland Dairy Andover MA re quart excellent Soldier in the slug plate; neck swirl; slogan roll Shawsheen Dairy Andover MA rp orange pint excellent one body belt; picture of Indian brave Mt Herman Boys School Mt.
    [Show full text]
  • Quick Start Guide to Making Camembert Cheese
    Quick Start Guide to Making Camembert Cheese 1. Sanitize knife, spoon, cups, thermometer, racks and milk containers with 2 tablespoons of bleach in 1 gal of warm water. Or use a non-rinse sanitizer such as Star San. 2. Warm a gallon of whole milk (plus 1/2 to 3/4 pint of heavy cream if you want a double cream cheese) to 90F (32C). 3. Sprinkle Packet 1 onto the surface of the milk (Penicillium candidum, Geotrichum candidum and Mesophilic starter Culture). Wait a few minutes for the dry cultures to dissolve a bit. 4. Gently stir the milk to mix the cultures throughout the milk. Cover and leave the milk for 90 minutes at 90F while it ripens. Note: Adding a little Calcium Chloride to the ripened milk just before you add the Rennet will help the milk coagulate, especially if you are using homogenized milk. 5. Gently sprinkle the contents of Packet 2 (dry calf rennet) on the surface of the milk. Gently stir the top 1/2 inch of the milk. This will dissolve the rennet throughout the milk and keep the cream from rising to the top. Cover and leave at 90F or until you get a clean break. This will take between 60 minutes and 2 hours. 6. To test for a clean break, dip the stirring spoon into the curd. When it is ready you will see a little whey separate from the curd. Using a sanitized knife, dice the curd front to back and then left to right. Cut the curd horizontally or stir them to cut the larger pieces until most of the pieces of curd are about 1/2 inch.
    [Show full text]
  • Studies on the Formation of Gas in Milk
    January, 1916 Research Bulletin No. 27 STUDIES ON THE FORMATION OF GAS IN MILK BY B. W . HAMMER AGRICULTURAL EXPERIMENT STATION IOWA STATE COLLEGE OF AGRICULTURE AND MECHANIC ARTS DAIRY SECTION AMES, IOWA STUDIES OF THE FORMATION OF GAS IN MILK By B. W. Hammer. The gassy fermentation of milk has recently been observed a number of times in the Iowa State College creamery, particu­ larly in the milk set for the manufacture of various types of soft cheese. The isolation and study of the causal organism or organisms was undertaken in several cases and the results ob­ tained, together with a brief statement of the cases investigated, are herein presented. HISTORICAL. The gassy fermentation is one of the more common abnormal fermentations met in the field of dairying. It has been reported as occurring in milk, in various types of cheese, in starters, in whey, in butter, in various milk drinks and in canned milk. The fermentation has been studied by many different investigators under widely varying conditions and a number of organisms have been reported as standing in causal relationship to it. The literature on gassy fermentation has been dealt with a number of times by American investigators* and since there is no relationship between much of it and the work herein reported, only a few of the papers having points of interest from the pres­ ent standpoint will be mentioned. Undoubtedly the greatest loss as a result of the gassy fermen­ tation occurs in cheese. A number of the experiment stations1 of the United States located in sections producing large amounts of cheese have studied the question of gas production in this product and the means of overcoming it, as well as the sources of the of the responsible organisms.
    [Show full text]