Fuzzy Rough Sets: from Theory into Practice Chris Cornelis1, Martine De Cock1, Anna Maria Radzikowska2 1 Computational Web Intelligence Dept. of Applied Mathematics and Computer Science Ghent University, Krijgslaan 281 (S9), 9000 Gent, Belgium {Chris.Cornelis, Martine.DeCock}@UGent.be http://www.cwi.UGent.be 2 Faculty of Mathematics and Information Science Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
[email protected] Abstract Fuzzy sets and rough sets address two important, and mutually orthogonal, char- acteristics of imperfect data and knowledge: while the former allow that objects belong to a set or relation to a given degree, the latter provide approximations of concepts in the presence of incomplete information. In this chapter, we demonstrate how these notions can be combined into a hybrid theory that is able to capture the best of different worlds. In particular, we review various alternatives for defin- ing lower and upper approximations of a fuzzy set under a fuzzy relation, and also explore their application in query refinement. 1 Introduction Fuzzy sets (Zadeh [35], 1965), as well as the slightly younger rough sets (Pawlak [23], 1982), have left an important mark on the way we represent and compute with imperfect information nowadays. Each of them has fostered a broad research community, and their impact has also been clearly felt at the application level. Although it was recognized early on that the associated theories are complementary rather than competitive, perceived similarities between both concepts and efforts to prove that one of them subsumes the other, have somewhat stalled progress towards shaping a hybrid theory that combines their mutual strengths.