CATALYTIC MECHANISM and FUNCTION EVOLVEMENT STUDIES of PHOSPHATASES WITHIN HALOACID DEHALOGENASE SUPERFAMILY (HADSF) Li Zheng

Total Page:16

File Type:pdf, Size:1020Kb

CATALYTIC MECHANISM and FUNCTION EVOLVEMENT STUDIES of PHOSPHATASES WITHIN HALOACID DEHALOGENASE SUPERFAMILY (HADSF) Li Zheng University of New Mexico UNM Digital Repository Chemistry ETDs Electronic Theses and Dissertations 7-10-2013 CATALYTIC MECHANISM AND FUNCTION EVOLVEMENT STUDIES OF PHOSPHATASES WITHIN HALOACID DEHALOGENASE SUPERFAMILY (HADSF) Li Zheng Follow this and additional works at: https://digitalrepository.unm.edu/chem_etds Recommended Citation Zheng, Li. "CATALYTIC MECHANISM AND FUNCTION EVOLVEMENT STUDIES OF PHOSPHATASES WITHIN HALOACID DEHALOGENASE SUPERFAMILY (HADSF)." (2013). https://digitalrepository.unm.edu/chem_etds/31 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Chemistry ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Li Zheng Candidate Chemistry and Chemical Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Debra Dunaway-Mariano , Chairperson Patrick S. Mariano Wei Wang Fu-Sen Liang Karen N. Allen CATALYTIC MECHANISM AND FUNCTION EVOLVEMENT STUDIES OF PHOSPHATASES WITHIN HALOACID DEHALOGENASE SUPERFAMILY (HADSF) by LI ZHENG B.S., Chemistry, Sichuan University, China, 2002 M.S., Chemistry, Sichuan University, China, 2005 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Chemistry The University of New Mexico Albuquerque, New Mexico January, 2013 DEDICATION To My parents Shifu Zheng and Changxiu Pang and My husband Min Wang I ACKNOWLEDGEMENTS I would like to express my deepest appreciation and gratitude to my research advisors Professor Patrick, S. Mariano and Professor Debra Dunaway-Mariano, not only for their scientific advice but also for their personal guidance. Their invaluable advice and everyday encouragement make all these years enjoyable and memorable. Their guidance and professional style will remain with me as I continue my career. Without them I could have never gone so far. They have the respect from the bottom of my heart. I thank my committee members, Dr. Wei Wang, Dr. Karen N. Allen and Dr. Fu-Sen Liang for their valuable recommendations pertaining to this study and assistance in my professional development. I am so grateful to have worked and collaborated with Dr. Karen N. Allen in Boston University. I am grateful to Dr. Kelly Daughtry for her great efforts in solving the crystal structure of YidA. I also thank Dr. Jeremiah Farelli for the high throughput screen for all the HAD phosphatases. Many thanks go to Dr. Yuriy V. Patskovsky in Albert Einstein College of Medicine for solving the structure of BT2542 phosphatase. I would also like to thank all of the past and present members of Dr. Debra Dunaway- Mariano’s research group for their help and friendship. Finally, I would like to thank my husband, Min Wang who supports me greatly not only on my life, but also on my research. Without his support, friendship, love and understanding, none of this would be possible. II Catalytic Mechanism and Function Evolvement Studies of Phosphatases within Haloacid Dehalogenase Superfamily (HADSF) by Li Zheng B.S., Chemistry, Sichuan University, China, 2002 M.S., Chemistry, Sichuan University, China, 2005 Ph.D., Chemistry, University of New Mexico, USA, 2013 ABSTRACT The haloacid dehalogenase superfamily (HADSF) is one of the largest known enzyme superfamilies, having more than 32,000 nonredundant members. Enzymes in this superfamily catalyze a number of different chemical reactions including dehalogenation, phosphoryl transfer, and hydrolysis of phosphate esters and phosphates. The vast majority of HADSF members are phosphatases, which contain a highly conserved core domain that is constructed to catalyze hydrolysis reactions of phosphorylated sugars or nucleotides by using an active site Asp nucleophile and a Mg2+ cofactor. Most phosphatases possess a cap domain, which in association with the core domain assists active site desolvation and binds the region of the substrate that is displaced by water upon Asp nucleophilic attack at the phosphoryl group. In the studies described in this Dissertation, two nucleotidases (AphA and mdN) were chosen to examine how the core Rossmann fold of HADSF members stabilizes the transition state of phosphoryl transfer III reactions and conserves the stable catalytic scaffold under the pressure of evolutionary changes that expand substrate range. Another phosphatase, YidA, was subjected to studies in order to gain information about how accessory cap domains serve as sophisticated substrate recognition sites. AphA is a nonspecific acid phosphohydrolase (NSAP) from Escherichia coli., which is secreted in the periplasmic space. Although AphA has the highest activity towards 5 -1 -1 hydrolysis of nucleotide phosphates (kcat/Km ~ 10 M s ), it does not yet have an identified biological function. The crystal structures of the apo enzyme as well as complexes of AphA with products of nucleotide monophosphate hydrolysis and with substrate/intermediate analogs have been elucidated. Earlier analysis of these crystal structures shows that a specific hydrophobic substrate binding pocket, formed by Phe56 and Tyr193, exists in AphA. The results of solvent isotope studies carried out in the research effort described in this Dissertation, as well as investigations probing the effect on rates of alcohol additives suggest that the rate-limiting step of the AphA catalyzed hydrolysis reaction of ATP is the second partial reaction in which dephosphorylation of the phosphoenzyme (E-P) intermediate takes place. Observations made in an investigation of the linear free energy relationship between pKa of the alcohol that serves as the nucleophilic phosphoryl acceptor and the second order rate constant for hydrolysis of the E-P intermediate indicate that the mechanism for the rate limiting step of the reaction involving water (or added alcohol) as the nucleophile is highly dissociative. In addition, release of products in this process involves release of inorganic phosphate first followed by release of adenosine. IV mdN is a mitochondrial deoxyribonucleotidase that is believed to function in a salvage pathways to regulate the sizes of deoxyribonucleotide pools. In Chapter 3 of the Dissertation, preliminary results of studies aimed at elucidating the detailed mechanism of mdN catalyzed hydrolysis reactions are presented. The findings show that mdN has activity towards substrates containing aromatic rings like those present in para- nitrophenyl phosphate, nucleotides and deoxynucleotides and that it is not active toward sugar phosphates. Like AphA, mdN contains a hydrophobic substrate-binding pocket formed by residues Phe75, Phe49, Trp76 and Trp96. The results of an investigation of mutli-turnover reactions of 14C dUMP catalyzed by mdN revealed that a pre-steady state burst phase takes place followed by a slow steady-state phase. This observation leads to the conclusion that the substrate-binding step is not the rate-limiting step. YidA is a HADSF phosphatase, isolated from E.coli., that has a C2 cap. This enzyme is an effective catalyst for hydrolysis of several known phosphate metabolites, such as arabinose-5-phosphate, erythrose-4-phosphate, α-mannnose-1-phosphate and α-glucose 1-phosphate as well as two related carboxylic acid derivatives. The YidA gene is located in the same “neighborhood” as the dgo operon, whose genes encode enzymes involved in the galactonate to pyruvate and glyceraldehyde 3-phosphate degradation pathway. Studies described in Chapter 4 show that YidA has a moderate activity toward hydrolysis of the intermediate in this pathway, D-2-dehydro-3-deoxy-D-galactonate-6-phosphate 3 -1 -1 (kcat/Km = 6.4 x 10 M s ). Therefore, YidA is believed to play the role of a housekeeper whose purpose is to remove accumulated phosphorylated metabolites. Studies with a series of site-directed mutants, in which the 10 highly conserved cap residues Arg46, Leu111, His129, Glu130, Lys154, Met156, Ser184, Tyr187, Phe188 and Glu190 are V replaced by Ala, revealed that Glu130, Glu190 and Lys154 play important roles in substrate recognition and binding, while His129 and F188 are critical for binding C6 aldose/carboxylate phosphates. Finally, a program targeted at protein function assignment is described in Chapter 5 of this Dissertation. Protein function assignment has always been a major goal in biology and, as the genome sequence database has rapidly expanded, this task has been significantly magnified. Unfortunately, using of bioinformatics techniques is unsuccessful in assigning the function of between 40-60% of the new enzyme sequences, and the much more demanding experimental methods have been applied to only a tiny fraction of the sequences. Therefore, a more reliable and efficient method for protein function assignment needs to be developed. The Enzyme Function Initiative (EFI), which is a large scale collaborative project that utilizes a multidisciplinary strategy to determine the functions of unknown proteins, was formed based on this consideration. In Chapter 5, the general strategy employed for enzyme functional assignment in this initiative is described along with preliminary experimental results. From the results of high throughput screening, four HADSF phosphatases from different organisms, YigB (EFI-501262) and YbjI(501335) from Escherichia coli, BT2542 (501088) from Bacteroides thetaiotaomicron and Q9RUP0 (501193) from Deinococcus radiodurans, were identified to have
Recommended publications
  • Regulation of Gene Expression by the Camp-Crp System in the Soil Bacterium Pseudomonas Putida
    UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA MOLECULAR Regulation of gene expression by the cAMP-Crp system in the soil bacterium Pseudomonas putida TESIS DOCTORAL Memoria presentada para optar al grado de Doctor en Ciencias Alejandro Arce Rodríguez DIRECTORES DE TESIS: Víctor de Lorenzo Prieto Belén Calles Arenales CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC) CENTRO NACIONAL DE BIOTECNOLOGÍA Madrid, 2012 En memoria de mi abuela Alicia Corrales Campos (1938-2012), quien un día se durmió en su particular “País de las maravillas” para no volver jamás. QEPD A Dios y a mi familia. Soy quien soy gracias a ustedes! In memory of my grandmother Alicia Corrales Campos (1938-2012), who one day fell asleep in her particular “Wonderland” to never come back. RIP To God and my family. Acknowledgements This work would not have been possible without the support of many people who I would like to thank with a few words. To Victor de Lorenzo, to whom I am especially grateful for the opportunity to join his group, for his teaching, his guidance and specially for supporting and encouraging me always, in the bad and good moments. Thank you very much F !! Also to Beléeeeeeen Calles for accepting to be the co-director of this Thesis, and of course for her teaching, her patience, her support and her friendship. Thank you both for showing me how to be a better scientist! Many thanks to Fernando Rojo, for accepting to be my tutor. I would like to thank Tino Krell and Raúl Platero, for their contribution with the ITC experiments and for the useful discussions about the thermodynamic properties of Crp.
    [Show full text]
  • Sequence Homology Between Purple Acid Phosphatases And
    Volume 263, number 2, 265-268 FEBS 08346 April 1990 Sequence homology between purple acid phosphatases and phosphoprotein phosphatases Are phosphoprotein phosphatases metalloproteins containing oxide-bridged dinuclear metal centers? John B. Vincent and Bruce A. Averill University of Virginia, Department of Chemistry, Charlottesville, VA 22901, USA Received 12 January 1990; revised version received 26 February 1990 The amino acid sequences of mammalian purple acid phosphatases and phosphoprotein phosphatases are shown to possess regions of significant homology. The conserved residues contain a high percentage of possible metal-binding residues. The phosphoprotein phosphatases I, 2A and 2B are proposed to be iron-zinc metalloenzymeswith active sites isostructural (or nearly so) with those of the purple phosphatases, Protein phosphatase; Purple acid phosphatase; Sequence homology 1. INTRODUCTION tain fungi and Drosophila have been shown to be highly homologous (50-90°70) to those of mammalian PP1 Phosphoprotein phosphatases (PPs) are a class of and PP2A [13,16-20], suggesting that the phosphopro- mammalian regulatory enzymes that catalyze the tein phosphatases may be widely distributed. dephosphorylation of phosphoserine and phospho- Mammalian purple acid phosphatases (PAPs) are threonine proteins [1,2]. Phosphoprotein phosphatase novel enzymes of molecular mass -37 kDa that contain 1 (PP1), which is inhibited by inhibitor-1 and -2, an oxide-bridged dinuclear iron active site. The amino generally occurs in a glycogen- or myosin-bound form. acid sequences of the enzymes from bovine spleen, por- The type 2 enzymes (insensitive to the above inhibitors) cine uterine fluid, and human placenta are highly are further subdivided into three classes. PP2A is a homologous (-90o70), again indicating a close relation- cytosolic enzyme that possesses broad reactivity, while ship [21,22].
    [Show full text]
  • X-Ray Structures of a Novel Acid Phosphatase from Escherichia Blattae and Its Complex with the Transition-State Analog Molybdate
    The EMBO Journal Vol. 19 No. 11 pp. 2412±2423, 2000 X-ray structures of a novel acid phosphatase from Escherichia blattae and its complex with the transition-state analog molybdate Kohki Ishikawa, Yasuhiro Mihara1, et al., 1994). The physiological function of the class A Keiko Gondoh, Ei-ichiro Suzuki2 and NSAPs remains to be determined. To date, this class of Yasuhisa Asano3 enzymes has been isolated from Zymomonas mobilis (Pond et al., 1989), Salmonella typhimurium (Kasahara Central Research Laboratories, Ajinomoto Co., Inc., 1-1 Suzuki-cho, et al., 1991), Morganella morganii (Thaller et al., 1994) Kawasaki-ku, Kawasaki 210-8681, 1Fermentation and Biotechnology Laboratories, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, and Shigella ¯exneri (Uchiya et al., 1996). The class A 3 Kawasaki 210-8681 and Biotechnology Research Center, Faculty of NSAPs possess a conserved sequence motif, KX6RP- Engineering, Toyama Prefectural University, 5180 Kurokawa, Kosugi, (X12±54)-PSGH-(X31±54)-SRX5HX3D, which is shared by Toyama 939-0398, Japan several lipid phosphatases and the mammalian glucose- 2Corresponding author 6-phosphatases (Stukey and Carman, 1997). Curiously, e-mail: [email protected] this motif is also found in the vanadium-containing chloroperoxidase (CPO) from Curvularia inaequalis. The structure of Escherichia blattae non-speci®c acid Hemrika et al. (1997) also found the motif independently, phosphatase (EB-NSAP) has been determined at 1.9 AÊ and discovered that apo-CPO exhibits phosphatase resolution with a bound sulfate marking the phos- activity. The crystal structure of CPO (Messerschmidt phate-binding site. The enzyme is a 150 kDa homo- and Wever, 1996) revealed that the conserved residues are hexamer.
    [Show full text]
  • Viewed Papers
    Kinetic, mechanistic, structural and spectroscopic investigations of Bimetallic Metallohydrolases Christopher Michael Selleck Bachelor of Science (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Chemistry and Molecular Biology Abstract Binuclear Metallohydrolases (BMHs) are a vast family of enzymes that play crucial roles in numerous metabolic pathways. The overarching aim of this thesis is the investigation of the structure and mechanism of a series of related BMHs, with a range of physicochemical techniques, in order to provide essential insight into the development of specific inhibitors. Since an increasing number of BMHs have become targets for chemotherapeutic agents, such inhibitors may thus serve as suitable leads in drug development. The general biochemical properties of BMHs is discussed in Chapter 1. Particular focus is on antibiotic-degrading metallo-β-lactamases (MBLs), Zn2+-dependent enzymes that have emerged as a major threat to global health care due to their ability to inactivate most of the commonly used antibiotics. No clinically relevant inhibitors for these enzymes are currently available, exacerbating their negative impact on the treatment of infections. Also discussed are a range of phosphatases; while functionally distinct from MBLs, they employ a related mechanistic strategy to hydrolyse a broad range of phosphorylated substrates. Specifically, purple acid phosphatases (PAPs) are also a useful target for novel chemotherapeutics to treat osteoporosis, while organophosphate (OP) pesticide- degrading enzymes have gained attention as biocatalysts for application in environmental remediation. In Chapter 2 the trajectory and transition state of the PAP-catalysed reaction is investigated using a high-resolution crystal structure.
    [Show full text]
  • The Catalytic Mechanisms of Binuclear Metallohydrolases
    3338 Chem. Rev. 2006, 106, 3338−3363 The Catalytic Mechanisms of Binuclear Metallohydrolases Natasˇa Mitic´,† Sarah J. Smith,† Ademir Neves,‡ Luke W. Guddat,† Lawrence R. Gahan,† and Gerhard Schenk*,† School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, QLD 4072, Australia, and Departamento de Quı´mica, Universidade Federal de Santa Catarina, Campus Trindade, Floriano´polis, SC 88040-900, Brazil Received November 18, 2005 Contents aminopeptidases,7 and the purple acid phosphatases.8-10 Despite their structural versatility and variations in metal ion 1. Introduction 3338 specificity (Table 1), binuclear metallohydrolases employ 2. Purple Acid Phosphatases 3338 variants of a similar basic mechanism. Similarities in the 2.1. Biochemical Characterization and Function 3338 first coordination sphere are found across the entire family 2.2. Structural Characterization 3341 of enzymes (Figure 1), but in the proposed models for 2.3. Catalytic Mechanism 3344 catalysis, the identity of the attacking nucleophile, the 2.4. Biomimetics of PAPs 3345 stabilization of reaction intermediates, and the relative 3. Ser/Thr Protein Phosphatases 3347 contribution of the metal ions vary substantially. 3.1. Biochemical Characterization and Function 3347 Here, an updated review of the current understanding of 3.2. Structural Characterization 3348 metallohydrolase-catalyzed reactions is presented. The mo- 3.3. Catalytic Mechanism 3350 tivation is to present, compare, and critically assess current models for metal ion assisted hydrolytic reaction mecha- 4. 3′-5′ Exonucleases 3351 nisms. The focus here is on four systems, purple acid 4.1. Biochemical Characterization and Function 3351 phosphatases (PAPs), Ser/Thr protein phosphatases (PPs), 4.2. Structural Characterization 3352 3′-5′ exonucleases, and 5′-nucleotidases (5′-NTs), which have 4.3.
    [Show full text]
  • Massoniana Seedlings to Phosphorus Deficiency
    The Temporal Transcriptomic Response of Pinus massoniana Seedlings to Phosphorus Deficiency Fuhua Fan1,2,3, Bowen Cui1, Ting Zhang1, Guang Qiao1, Guijie Ding2, Xiaopeng Wen1* 1 Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous region (Guizhou University), Ministry of Education, Institute of Agro- bioengineering, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China, 2 School of Forestry Science, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China, 3 The School of Nuclear Technology and Chemical and Biological, Hubei University of Science and Technology, Xianning, Hubei Province, People’s Republic of China Abstract Background: Phosphorus (P) is an essential macronutrient for plant growth and development. Several genes involved in phosphorus deficiency stress have been identified in various plant species. However, a whole genome understanding of the molecular mechanisms involved in plant adaptations to low P remains elusive, and there is particularly little information on the genetic basis of these acclimations in coniferous trees. Masson pine (Pinus massoniana) is grown mainly in the tropical and subtropical regions in China, many of which are severely lacking in inorganic phosphate (Pi). In previous work, we described an elite P. massoniana genotype demonstrating a high tolerance to Pi-deficiency. Methodology/Principal Findings: To further investigate the mechanism of tolerance to low P, RNA-seq was performed to give an idea of extent of expression from the two mixed libraries, and microarray whose probes were designed based on the unigenes obtained from RNA-seq was used to elucidate the global gene expression profiles for the long-term phosphorus starvation. A total of 70,896 unigenes with lengths ranging from 201 to 20,490 bp were assembled from 112,108,862 high quality reads derived from RNA-Seq libraries.
    [Show full text]
  • X-Ray Structures of a Novel Acid Phosphatase from Escherichia Blattae and Its Complex with the Transition-State Analog Molybdate
    The EMBO Journal Vol. 19 No. 11 pp. 2412±2423, 2000 X-ray structures of a novel acid phosphatase from Escherichia blattae and its complex with the transition-state analog molybdate Kohki Ishikawa, Yasuhiro Mihara1, et al., 1994). The physiological function of the class A Keiko Gondoh, Ei-ichiro Suzuki2 and NSAPs remains to be determined. To date, this class of Yasuhisa Asano3 enzymes has been isolated from Zymomonas mobilis (Pond et al., 1989), Salmonella typhimurium (Kasahara Central Research Laboratories, Ajinomoto Co., Inc., 1-1 Suzuki-cho, et al., 1991), Morganella morganii (Thaller et al., 1994) Kawasaki-ku, Kawasaki 210-8681, 1Fermentation and Biotechnology Laboratories, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, and Shigella ¯exneri (Uchiya et al., 1996). The class A 3 Kawasaki 210-8681 and Biotechnology Research Center, Faculty of NSAPs possess a conserved sequence motif, KX6RP- Engineering, Toyama Prefectural University, 5180 Kurokawa, Kosugi, (X12±54)-PSGH-(X31±54)-SRX5HX3D, which is shared by Toyama 939-0398, Japan several lipid phosphatases and the mammalian glucose- 2Corresponding author 6-phosphatases (Stukey and Carman, 1997). Curiously, e-mail: [email protected] this motif is also found in the vanadium-containing chloroperoxidase (CPO) from Curvularia inaequalis. The structure of Escherichia blattae non-speci®c acid Hemrika et al. (1997) also found the motif independently, phosphatase (EB-NSAP) has been determined at 1.9 AÊ and discovered that apo-CPO exhibits phosphatase resolution with a bound sulfate marking the phos- activity. The crystal structure of CPO (Messerschmidt phate-binding site. The enzyme is a 150 kDa homo- and Wever, 1996) revealed that the conserved residues are hexamer.
    [Show full text]
  • Fingerprint Motifs of Phytases
    African Journal of Biotechnology Vol. 12(10), pp. 1138-1147, 6 March, 2013 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB12.1279 ISSN 1684–5315 ©2013 Academic Journals Full Length Research Paper Fingerprint motifs of phytases Cheng-Ming Fan1#, Ya-Hui Wang2#, Chang-Ying Zheng2 and Yong-Fu Fu1* 1MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China. 2College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, China. Accepted 2 October, 2012 Phytate is the major form of phosphorus storage in plant seeds and the soil organic phosphorus. The phytase is a class of enzymes which catalyzes the hydrolysis of phytate and release free orthophosphoric acid. Motifs provide insight into protein structure, function and evolution. 39 fingerprint motifs were obtained in phytases through multiple EM for motif elicitation (MEME) analysis based on 54 whole phytase sequences with an average of 16.6% identity (ranging from 3.9 to 52.5%). The phytase family is classified into seven groups: HAPhys, PAPhys, BPPhys, BPRPhys, PTPhys, ALPhys and APPAs according to the phylogenetic analysis and motif characters. Every phytase group has its typical fingerprint motifs through motif alignment and search tool (MAST) results. Based on the phylogenetic tree and characteristics of phytase motif organisations, BPPhy family has 13 motifs, and is classified into five subgroups, BPPhy I to V. HAPhy with 11 motifs is classified into four subgroups, HAPhyI to IV. PAPhy, BPRPhy, PTPhy and APPAs have four, four, four and six fingerprint motifs, respectively, but no fingerprint motifs are found by MAST for ALPhys.
    [Show full text]
  • Supplemental Table 7. Every Significant Association
    Supplemental Table 7. Every significant association between an individual covariate and functional group (assigned to the KO level) as determined by CPGLM regression analysis. Variable Unit RelationshipLabel See also CBCL Aggressive Behavior K05914 + CBCL Emotionally Reactive K05914 + CBCL Externalizing Behavior K05914 + K15665 K15658 CBCL Total K05914 + K15660 K16130 KO: E1.13.12.7; photinus-luciferin 4-monooxygenase (ATP-hydrolysing) [EC:1.13.12.7] :: PFAMS: AMP-binding enzyme; CBQ Inhibitory Control K05914 - K12239 K16120 Condensation domain; Methyltransferase domain; Thioesterase domain; AMP-binding enzyme C-terminal domain LEC Family Separation/Social Services K05914 + K16129 K16416 LEC Poverty Related Events K05914 + K16124 LEC Total K05914 + LEC Turmoil K05914 + CBCL Aggressive Behavior K15665 + CBCL Anxious Depressed K15665 + CBCL Emotionally Reactive K15665 + K05914 K15658 CBCL Externalizing Behavior K15665 + K15660 K16130 KO: K15665, ppsB, fenD; fengycin family lipopeptide synthetase B :: PFAMS: Condensation domain; AMP-binding enzyme; CBCL Total K15665 + K12239 K16120 Phosphopantetheine attachment site; AMP-binding enzyme C-terminal domain; Transferase family CBQ Inhibitory Control K15665 - K16129 K16416 LEC Poverty Related Events K15665 + K16124 LEC Total K15665 + LEC Turmoil K15665 + CBCL Aggressive Behavior K11903 + CBCL Anxiety Problems K11903 + CBCL Anxious Depressed K11903 + CBCL Depressive Problems K11903 + LEC Turmoil K11903 + MODS: Type VI secretion system K01220 K01058 CBCL Anxiety Problems K11906 + CBCL Depressive
    [Show full text]
  • Rapid Kinetic Studies of Phya from Selenomonas Ruminantium, and a Simplified Means of Production of a Phosphate Biosensor
    RAPID KINETIC STUDIES OF PHYA FROM SELENOMONAS RUMINANTIUM, AND A SIMPLIFIED MEANS OF PRODUCTION OF A PHOSPHATE BIOSENSOR Dustin D. Smith Bachelor of Science, University of Lethbridge, 2013 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE (Biochemistry) Department of Chemistry and Biochemistry/ Department of Biological Sciences University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Dustin D. Smith, 2016 RAPID KINETIC STUDIES OF PHYA FROM SELENOMONAS RUMINANTIUM, AND A SIMPLIFIED MEANS OF PRODUCTION OF A PHOSPHATE BIOSENSOR DUSTIN D. SMITH Date of Defence: Dec. 16, 2016 Dr. Hans-Joachim Wieden Professor Ph.D. Co-Supervisor Dr. L. Brent Selinger Professor Ph.D. Co-Supervisor Dr. Steven Mosimann Associate Professor Ph.D. Thesis Examination Committee Member Dr. Wade Abbott Adjunct Professor Ph.D. Thesis Examination Committee Member Dr. Rene Boere Professor Ph.D. Chair, Thesis Examination Committee Abstract Myo-inositol polyphosphates (IPs) are ubiquitous in nature and involved in various cellular events. Dephosphorylation of IPs by protein tyrosine phosphatase-like polyphosphatases (PTPLPs) occurs via a complex pathway, and the in vivo function of many of these enzymes remains unknown. In order to further our understanding of PTPLP catalyzed dephosphorylation of IPs; I present rapid kinetics studies of the representative PTPLP PhyA from Selenomonas ruminantium (PhyAsr). These studies revealed kinetic parameters of PhyAsr dimerization, and myo-inositol hexakisphosphate (IP6) binding to the homodimer. In addition to studying PhyAsr, I have developed a simplified methodology to produce a biosensor capable of detecting phosphate release in real-time. The phosphate biosensor is fluorescently labeled and utilizes Escherichia coli Phosphate-binding protein (PhoS).
    [Show full text]
  • Genome-Wide Characterization and Evolutionary Analyses of Purple Acid Phosphatase
    Article Genome-Wide Characterization and Evolutionary Analyses of Purple Acid Phosphatase (PAP) Gene Family with Their Expression Profiles in Response to Low Phosphorus Stresses in Moso Bamboo (Phyllostachys edulis) Mengyan Zhou 1, Wanting Chen 1, Mingzhen Zhao 1, Yachao Li 1, Ming Li 1,2 and Xia Hu 1,3,* 1 Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (M.Z.); [email protected] (W.C.); [email protected] (M.Z.); [email protected] (Y.L.); [email protected] (M.L.) 2 Fujian Provincial Colleges and University Engineering Research Center of Plantation Sustainable Management, Fuzhou 350002, China 3 Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China * Correspondence: [email protected]; Tel.: +86-591-8378-0261 Abstract: Low phosphorus increases acid phosphatase activity and transfers soluble phosphorus from the underground to the above-ground, but also inhibits the growth and development of the Moso bamboo root system. Purple acid phosphatase (PAP), a kind of acid phosphatase, plays an important role in phosphorus (P) uptake and metabolism. In our study of the Moso bamboo PAP gene family, we identified 17 Moso bamboo PAP genes (PePAP) in the entire genome and further analyzed their physical and chemical properties and functions PePAP. According to the analysis of the phylogenetic tree, special domains and conserved motifs, these 17 genes can be divided Citation: Zhou, M.; Chen, W.; Zhao, M.; Li, Y.; Li, M.; Hu, X. into four categories. The gene structure and conserved motifs are relatively conservative, but the Genome-Wide Characterization and 17 sequences of the PePAP domain are diverse.
    [Show full text]
  • Metal-Ion Mutagenesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MURAL - Maynooth University Research Archive Library Published on Web 05/26/2009 Metal-Ion Mutagenesis: Conversion of a Purple Acid Phosphatase from Sweet Potato to a Neutral Phosphatase with the Formation of an Unprecedented Catalytically Competent MnIIMnII Active Site Natasˇa Mitic´,† Christopher J. Noble,‡ Lawrence R. Gahan,† Graeme R. Hanson,*,‡ and Gerhard Schenk*,† School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The UniVersity of Queensland, Queensland, Australia, 4072 Received February 1, 2009; E-mail: [email protected]; [email protected] Abstract: The currently accepted paradigm is that the purple acid phosphatases (PAPs) require a heterovalent, dinuclear metal-ion center for catalysis. It is believed that this is an essential feature for these enzymes in order for them to operate under acidic conditions. A PAP from sweet potato is unusual in that it appears to have a specific requirement for manganese, forming a unique FeIII-µ-(O)-MnII center under catalytically optimal conditions (Schenk et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 273). Herein, we demonstrate, with detailed electron paramagnetic resonance (EPR) spectroscopic and kinetic studies, that in this enzyme the chromophoric FeIII can be replaced by MnII, forming a catalytically active, unprecedented antiferromagnetically coupled homodivalent MnII-µ-(H)OH-µ-carboxylato-MnII center in a PAP. However, although the enzyme is still active, it no longer functions as an acid phosphatase, having optimal activity at neutral pH. Thus, PAPs may have evolved from distantly related divalent dinuclear metallohydrolases that operate under pH neutral conditions by stabilization of a trivalent-divalent metal-ion core.
    [Show full text]